5WQA / app.py
Towhidul's picture
Update app.py
0f98ea0
raw
history blame
33 kB
import streamlit as st
from transformers import pipeline
import re
import time
import requests
from PIL import Image
HF_SPACES_API_KEY = st.secrets["HF_token"]
API_URL = "https://api-inference.huggingface.co/models/microsoft/prophetnet-large-uncased-squad-qg"
headers = {"Authorization": HF_SPACES_API_KEY}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
#-----------------------------------------------------------
API_URL_evidence = "https://api-inference.huggingface.co/models/google/flan-t5-xxl"
headers_evidence = {"Authorization": HF_SPACES_API_KEY}
def query_evidence(payload):
response = requests.post(API_URL_evidence, headers=headers_evidence, json=payload)
return response.json()
#-----------------------------------------------------------
st.title('Welcome to :blue[FACTIFY - 5WQA] ')
# st.set_page_config(
# page_title="Welcome to :blue[FACTIFY - 5WQA]",
# layout="wide"
# )
# st.markdown("<center> <h2> 5W Aspect-based Fact Verification through Question Answering :blue[Web Demo]", unsafe_allow_html=True)
#st.markdown("<center>Ask a question about the collapse of the Silicon Valley Bank (SVB).</center>", unsafe_allow_html=True)
st.header('5W Aspect-based Fact Verification through Question Answering :blue[Web Demo]')
image = Image.open('5W QA Illustration.jpg')
st.image(image, caption='5W QA Generation Pipeline')
st.subheader('Here are a few steps to begin exploring and interacting with this demo.')
st.caption('First you need to input your claim.')
st.caption('Then you need to input your evidence.')
st.caption('Upon completing these two steps, kindly wait for a minute to receive the results.')
st.caption('Start by inputting the following instance of a claim and corresponding evidence into the designated text fields.')
#-----------------------------------------------------------------------------------------------
st.caption('**Example 1**')
st.caption(''':green[Claim:] :point_right: Moderna's legal actions towards Pfizer-BioNTech indicate that the development of COVID-19 vaccines was underway prior to the commencement of the pandemic.''')
st.caption(''':green[Evidence:] :point_right: Moderna is suing Pfizer and BioNTech for patent infringement, alleging the rival companies used key parts of its mRNA technology to develop their COVID-19 vaccine. Moderna’s patents were filed between 2010 and 2016.
''')
# st.caption(''':green[Evidence:] :point_right: Due to the consumers increasingly relying on online retailers,
# Amazon planned to hire over 99,000 workers in the warehouse and delivery sector during the Pandemic in the USA.''')
#-----------------------------------------------------------------------------------------------
st.caption('**Example 2**')
st.caption(''':green[Claim:] :point_right: In China, Buddhist monks and nuns lived together in places such as the Yunnan monastery.''')
st.caption(''':green[Evidence:] :point_right: Monastics in Japan are particularly exceptional in the Buddhist tradition because the monks and nuns can marry after receiving their higher ordination . ''')
#-----------------------------------------------------------------------------------------------
st.caption('**Example 3**')
st.caption(''':green[Claim:] :point_right: In Batman, Penguin hydrates the henchmen with water contaminated with atomic waste.''')
st.caption(''':green[Evidence:] :point_right: And Penguin even schemes his way into the Batcave along with five dehydrated henchmen ;
this plan fails when the henchmen are unexpectedly killed
when he mistakenly rehydrates them with heavy water contaminated with atomic waste ,
regularly used to recharge the Batcave s atomic pile . ''')
#-----------------------------------------------------------
st.caption('**Example 4**')
st.caption(''':green[Claim:] :point_right: Amazon to hire 100K workers and until April Amazon will raise hourly wages by $2 due to pandemic demand.''')
st.caption(''':green[Evidence:] : Due to the consumers increasingly relying on online retailers, Amazon planned to hire over 99,000 workers in the warehouse and delivery sector during the Pandemic in the USA.''')
#-----------------------------------------------------------
def proc():
st.write(st.session_state.text_key)
claim_text=st.text_area("Enter your claim:", on_change=proc, key='text_key')
evidence_text=st.text_area("Enter your evidence:")
# form_evidence = st.form(key='my_evidence')
# form_evidence.text_input(label='Enter your evidence')
# evidence_text = form_evidence.form_submit_button(label='Submit')
# if evidence_text:
#st.caption(':green[Kindly hold on for a few minutes while the QA pairs are being generated]')
#st.caption(':blue[At times, you may encounter null/none outputs, which could be a result of a delay in loading the models through the API. If you experience this problem, kindly try again after a few minutes.]')
import pandas as pd
from rouge_score import rouge_scorer
import numpy as np
from allennlp.predictors.predictor import Predictor
import allennlp_models.tagging
predictor = Predictor.from_path("structured-prediction-srl-bert.tar.gz")
#---------------------------------------------------------------
list_of_pronouns = ["I", "you", "he", "she", "it", "we", "they", "me", "him", "her", "us", "them",
"mine", "yours", "his", "hers", "its", "ours", "theirs",
"this", "that", "these", "those",
"myself", "yourself", "himself", "herself", "itself", "ourselves", "yourselves", "themselves",
"who", "whom", "what", "which", "whose",
"all", "another", "any", "anybody", "anyone", "anything", "both", "each", "either",
"everybody", "everyone", "everything", "few", "many", "neither", "nobody", "none", "nothing",
"one", "other", "several", "some", "somebody", "someone", "something"]
#---------------------------------------------------------------
# @st.cache
def claim(text):
import re
def remove_special_chars(text):
# Remove special characters that are not in between numbers
text = re.sub(r'(?<!\d)[^\w\s]+(?!\d)', '', text)
return text
df = pd.DataFrame({'claim' : remove_special_chars(text)},index=[0])
def srl_allennlp(sent):
try:
#result = predictor.predict(sentence=sent)['verbs'][0]['description']
#result = predictor.predict(sentence=sent)['verbs'][0]['tags']
result = predictor.predict(sentence=sent)
return(result)
except IndexError:
pass
#return(predictor.predict(sentence=sent))
df['allennlp_srl'] = df['claim'].apply(lambda x: srl_allennlp(x))
df['number_of_verbs'] = ''
df['verbs_group'] = ''
df['words'] = ''
df['verbs'] = ''
df['modified'] =''
col1 = df['allennlp_srl']
for i in range(len(col1)):
num_verb = len(col1[i]['verbs'])
df['number_of_verbs'][i] = num_verb
df['verbs_group'][i] = col1[i]['verbs']
df['words'][i] = col1[i]['words']
x=[]
for verb in range(len(col1[i]['verbs'])):
x.append(col1[i]['verbs'][verb]['verb'])
df['verbs'][i] = x
verb_dict ={}
desc = []
for j in range(len(col1[i]['verbs'])):
string = (col1[i]['verbs'][j]['description'])
string = string.replace("ARG0", "who")
string = string.replace("ARG1", "what")
string = string.replace("ARGM-TMP", "when")
string = string.replace("ARGM-LOC", "where")
string = string.replace("ARGM-CAU", "why")
desc.append(string)
verb_dict[col1[i]['verbs'][j]['verb']]=string
df['modified'][i] = verb_dict
#----------FOR COLUMN "WHO"------------#
df['who'] = ''
for j in range(len(df['modified'])):
val_list = []
val_string = ''
for k,v in df['modified'][j].items():
val_list.append(v)
who = set() # use set to remove duplicates
for indx in range(len(val_list)):
val_string = val_list[indx]
pos = val_string.find("who: ")
substr = ''
if pos != -1:
for i in range(pos+5, len(val_string)):
if val_string[i] == "]":
break
else:
substr = substr + val_string[i]
substr = substr.strip() # remove leading/trailing white space
pronouns = list_of_pronouns
if substr.lower() not in pronouns and not substr.lower().endswith("'s"): # remove pronouns and possessive pronouns
who.add(substr)
else:
pass
df['who'][j] = "<sep>".join(who)
# else:
# continue
#----------FOR COLUMN "WHAT"------------#
df['what'] = ''
for j in range(len(df['modified'])):
val_list = []
val_string = ''
for k,v in df['modified'][j].items():
val_list.append(v)
what = set() # use set to remove duplicates
for indx in range(len(val_list)):
val_string = val_list[indx]
pos = val_string.find("what: ")
substr = ''
if pos != -1:
for i in range(pos+5, len(val_string)):
if val_string[i] == "]":
break
else:
substr = substr + val_string[i]
substr = substr.strip() # remove leading/trailing white space
pronouns = list_of_pronouns
if substr.lower() not in pronouns and not substr.lower().endswith("'s"): # remove pronouns and possessive pronouns
what.add(substr)
else:
pass
df['what'][j] = "<sep>".join(what)
#----------FOR COLUMN "WHY"------------#
df['why'] = ''
for j in range(len(df['modified'])):
val_list = []
val_string = ''
for k,v in df['modified'][j].items():
val_list.append(v)
why = set() # use set to remove duplicates
for indx in range(len(val_list)):
val_string = val_list[indx]
pos = val_string.find("why: ")
substr = ''
if pos != -1:
for i in range(pos+5, len(val_string)):
if val_string[i] == "]":
break
else:
substr = substr + val_string[i]
substr = substr.strip() # remove leading/trailing white space
pronouns = list_of_pronouns
if substr.lower() not in pronouns and not substr.lower().endswith("'s"): # remove pronouns and possessive pronouns
why.add(substr)
else:
pass
df['why'][j] = "<sep>".join(why)
#----------FOR COLUMN "WHEN"------------#
df['when'] = ''
for j in range(len(df['modified'])):
val_list = []
val_string = ''
for k,v in df['modified'][j].items():
val_list.append(v)
when = set() # use set to remove duplicates
for indx in range(len(val_list)):
val_string = val_list[indx]
pos = val_string.find("when: ")
substr = ''
if pos != -1:
for i in range(pos+5, len(val_string)):
if val_string[i] == "]":
break
else:
substr = substr + val_string[i]
substr = substr.strip() # remove leading/trailing white space
pronouns = list_of_pronouns
if substr.lower() not in pronouns and not substr.lower().endswith("'s"): # remove pronouns and possessive pronouns
when.add(substr)
else:
pass
df['when'][j] = "<sep>".join(when)
#----------FOR COLUMN "WHERE"------------#
df['where'] = ''
for j in range(len(df['modified'])):
val_list = []
val_string = ''
for k,v in df['modified'][j].items():
val_list.append(v)
where = set() # use set to remove duplicates
for indx in range(len(val_list)):
val_string = val_list[indx]
pos = val_string.find("where: ")
substr = ''
if pos != -1:
for i in range(pos+5, len(val_string)):
if val_string[i] == "]":
break
else:
substr = substr + val_string[i]
substr = substr.strip() # remove leading/trailing white space
pronouns = list_of_pronouns
if substr.lower() not in pronouns and not substr.lower().endswith("'s"): # remove pronouns and possessive pronouns
where.add(substr)
else:
pass
df['where'][j] = "<sep>".join(where)
data=df[["claim","who","what","why","when","where"]].copy()
return data
#-------------------------------------------------------------------------
# @st.cache
def split_ws(input_list, delimiter="<sep>"):
output_list = []
for item in input_list:
split_item = item.split(delimiter)
for sub_item in split_item:
sub_item = sub_item.strip()
if sub_item:
output_list.append(sub_item)
return output_list
#--------------------------------------------------------------------------
# @st.cache
def calc_rouge_l_score(list_of_evidence, list_of_ans):
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
scores = scorer.score(' '.join(list_of_evidence), ' '.join(list_of_ans))
return scores['rougeL'].fmeasure
#-------------------------------------------------------------------------
# @st.cache
def rephrase_question_who(question):
if not question.lower().startswith("who"):
words = question.split()
words[0] = "Who"
return " ".join(words)
else:
return question
#------------------------------------------------------------------------
# @st.cache
def gen_qa_who(df):
list_of_ques_who=[]
list_of_ans_who=[]
list_of_evidence_answer_who=[]
rouge_l_scores=[]
for i,row in df.iterrows():
srl=df["who"][i]
claim=df['claim'][i]
answer= split_ws(df["who"])
evidence=df["evidence"][i]
time.sleep(5)
if srl!="":
try:
for j in range(0,len(answer)):
FACT_TO_GENERATE_QUESTION_FROM = f"""{answer[j]} [SEP] {claim}"""
#FACT_TO_GENERATE_QUESTION_FROM = f"""generate_who_based_question_from_context_using_the_next_answer:{answer[j]} [SEP] context:{claim}"""
#time.sleep(10)
question_ids = query({"inputs":FACT_TO_GENERATE_QUESTION_FROM,
"num_beams":5,
"early_stopping":True,
"min_length": 100,"wait_for_model":True})[0]['generated_text'].capitalize()
question_ids = rephrase_question_who(question_ids)
list_of_ques_who.append(f"""Q{j+1} :\n {question_ids}""")
list_of_ans_who.append(f"""Claim :\n {answer[j]}""")
input_evidence = f"answer_the_next_question_from_context: {question_ids} context: {evidence}"
time.sleep(5)
answer_evidence = query_evidence({"inputs":input_evidence,"truncation":True,"wait_for_model":True})[0]['generated_text']
if answer_evidence.lower() in evidence.lower():
list_of_evidence_answer_who.append(f"""Answer retrieved from evidence :\n {answer_evidence}""")
else:
answer_evidence=""
list_of_evidence_answer_who.append(f"""No mention of 'who'in any related documents.""")
threshold = 0.2
list_of_pairs = [(answer_evidence, answer[j])]
rouge_l_score = calc_rouge_l_score(answer_evidence, answer[j])
if rouge_l_score >= threshold:
verification_status = '✅ Verified Valid'
elif rouge_l_score == 0:
verification_status = '❔ Not verifiable'
else:
verification_status = '❌ Verified False'
rouge_l_scores.append(verification_status)
except:
pass
else:
list_of_ques_who="No claims"
list_of_ans_who=""
list_of_evidence_answer_who="No mention of 'who'in any related documents."
rouge_l_scores="❔ Not verifiable"
return list_of_ques_who,list_of_ans_who,list_of_evidence_answer_who,rouge_l_scores
#------------------------------------------------------------
# @st.cache
def rephrase_question_what(question):
if not question.lower().startswith("what"):
words = question.split()
words[0] = "What"
return " ".join(words)
else:
return question
#----------------------------------------------------------
# @st.cache
def gen_qa_what(df):
list_of_ques_what=[]
list_of_ans_what=[]
list_of_evidence_answer_what=[]
rouge_l_scores=[]
for i,row in df.iterrows():
srl=df["what"][i]
claim=df['claim'][i]
answer= split_ws(df["what"])
evidence=df["evidence"][i]
time.sleep(5)
if srl!="":
try:
for j in range(0,len(answer)):
FACT_TO_GENERATE_QUESTION_FROM = f"""{answer[j]} [SEP] context:{claim}"""
#time.sleep(10)
question_ids = query({"inputs":FACT_TO_GENERATE_QUESTION_FROM,
"num_beams":5,
"early_stopping":True,
"min_length": 100,"wait_for_model":True})[0]['generated_text'].capitalize()
question_ids = rephrase_question_what(question_ids)
list_of_ques_what.append(f"""Q{j+1}:{question_ids}""")
list_of_ans_what.append(f"""Claim :\n {answer[j]}""")
input_evidence = f"answer_the_next_question_from_context: {question_ids} context: {evidence}"
time.sleep(5)
answer_evidence = query_evidence({"inputs":input_evidence,"truncation":True,"wait_for_model":True})[0]['generated_text']
if answer_evidence.lower() in evidence.lower():
list_of_evidence_answer_what.append(f"""Answer retrieved from evidence :\n {answer_evidence}""")
else:
answer_evidence=""
list_of_evidence_answer_what.append(f"""No mention of 'what'in any related documents.""")
threshold = 0.2
list_of_pairs = [(answer_evidence, answer[j])]
rouge_l_score = calc_rouge_l_score(answer_evidence, answer[j])
if rouge_l_score >= threshold:
verification_status = '✅ Verified Valid'
elif rouge_l_score == 0:
verification_status = '❔ Not verifiable'
else:
verification_status = '❌ Verified False'
rouge_l_scores.append(verification_status)
except:
pass
else:
list_of_ques_what="No claims"
list_of_ans_what=""
list_of_evidence_answer_what="No mention of 'what'in any related documents."
rouge_l_scores="❔ Not verifiable"
return list_of_ques_what,list_of_ans_what,list_of_evidence_answer_what,rouge_l_scores
#----------------------------------------------------------
# @st.cache
def rephrase_question_why(question):
if not question.lower().startswith("why"):
words = question.split()
words[0] = "Why"
return " ".join(words)
else:
return question
#---------------------------------------------------------
# @st.cache
def gen_qa_why(df):
list_of_ques_why=[]
list_of_ans_why=[]
list_of_evidence_answer_why=[]
rouge_l_scores=[]
for i,row in df.iterrows():
srl=df["why"][i]
claim=df['claim'][i]
answer= split_ws(df["why"])
evidence=df["evidence"][i]
time.sleep(5)
if srl!="":
try:
for j in range(0,len(answer)):
FACT_TO_GENERATE_QUESTION_FROM = f"""{answer[j]} [SEP] {claim}"""
#time.sleep(10)
question_ids = query({"inputs":FACT_TO_GENERATE_QUESTION_FROM,
"num_beams":5,
"early_stopping":True,
"min_length": 100,"wait_for_model":True})[0]['generated_text'].capitalize()
question_ids = rephrase_question_why(question_ids)
list_of_ques_why.append(f"""Q{j+1}:{question_ids}""")
list_of_ans_why.append(f"""Claim :\n {answer[j]}""")
input_evidence = f"answer_the_next_question_from_context: {question_ids} context: {evidence}"
time.sleep(5)
answer_evidence = query_evidence({"inputs":input_evidence,"truncation":True,"wait_for_model":True})[0]['generated_text']
if answer_evidence.lower() in evidence.lower():
list_of_evidence_answer_why.append(f"""Answer retrieved from evidence :\n {answer_evidence}""")
else:
answer_evidence=""
list_of_evidence_answer_why.append(f"""No mention of 'why'in any related documents.""")
threshold = 0.2
list_of_pairs = [(answer_evidence, answer[j])]
rouge_l_score = calc_rouge_l_score(answer_evidence, answer[j])
if rouge_l_score >= threshold:
verification_status = '✅ Verified Valid'
elif rouge_l_score == 0:
verification_status = '❔ Not verifiable'
else:
verification_status = '❌ Verified False'
rouge_l_scores.append(verification_status)
except:
pass
else:
list_of_ques_why="No claims"
list_of_ans_why=""
list_of_evidence_answer_why="No mention of 'why'in any related documents."
rouge_l_scores="❔ Not verifiable"
return list_of_ques_why,list_of_ans_why,list_of_evidence_answer_why,rouge_l_scores
#---------------------------------------------------------
# @st.cache
def rephrase_question_when(question):
if not question.lower().startswith("when"):
words = question.split()
words[0] = "When"
return " ".join(words)
else:
return question
#---------------------------------------------------------
# @st.cache
def gen_qa_when(df):
list_of_ques_when=[]
list_of_ans_when=[]
list_of_evidence_answer_when=[]
rouge_l_scores=[]
for i,row in df.iterrows():
srl=df["when"][i]
claim=df['claim'][i]
answer= split_ws(df["when"])
evidence=df["evidence"][i]
time.sleep(5)
if srl!="":
try:
for j in range(0,len(answer)):
FACT_TO_GENERATE_QUESTION_FROM = f"""{answer[j]} [SEP] {claim}"""
#time.sleep(10)
question_ids = query({"inputs":FACT_TO_GENERATE_QUESTION_FROM,
"num_beams":5,
"early_stopping":True,
"min_length": 100,"wait_for_model":True})[0]['generated_text'].capitalize()
question_ids = rephrase_question_when(question_ids)
list_of_ques_when.append(f"""Q{j+1}:{question_ids}""")
list_of_ans_when.append(f"""Claim :\n {answer[j]}""")
input_evidence = f"answer_the_next_question_from_context: {question_ids} context: {evidence}"
time.sleep(5)
answer_evidence = query_evidence({"inputs":input_evidence,"truncation":True,"wait_for_model":True})[0]['generated_text']
if answer_evidence.lower() in evidence.lower():
list_of_evidence_answer_when.append(f"""Answer retrieved from evidence :\n {answer_evidence}""")
else:
answer_evidence=""
list_of_evidence_answer_when.append(f"""No mention of 'when'in any related documents.""")
threshold = 0.2
list_of_pairs = [(answer_evidence, answer[j])]
rouge_l_score = calc_rouge_l_score(answer_evidence, answer[j])
if rouge_l_score >= threshold:
verification_status = '✅ Verified Valid'
elif rouge_l_score == 0:
verification_status = '❔ Not verifiable'
else:
verification_status = '❌ Verified False'
rouge_l_scores.append(verification_status)
except:
pass
else:
list_of_ques_when="No claims"
list_of_ans_when=""
list_of_evidence_answer_when="No mention of 'when'in any related documents."
rouge_l_scores="❔ Not verifiable"
return list_of_ques_when,list_of_ans_when,list_of_evidence_answer_when,rouge_l_scores
#------------------------------------------------------
# @st.cache
def rephrase_question_where(question):
if not question.lower().startswith("where"):
words = question.split()
words[0] = "Where"
return " ".join(words)
else:
return question
#------------------------------------------------------
# @st.cache
def gen_qa_where(df):
list_of_ques_where=[]
list_of_ans_where=[]
list_of_evidence_answer_where=[]
rouge_l_scores=[]
for i,row in df.iterrows():
srl=df["where"][i]
claim=df['claim'][i]
answer= split_ws(df["where"])
evidence=df["evidence"][i]
time.sleep(5)
if srl!="":
try:
for j in range(0,len(answer)):
FACT_TO_GENERATE_QUESTION_FROM = f"""{answer[j]} [SEP] {claim}"""
time.sleep(10)
question_ids = query({"inputs":FACT_TO_GENERATE_QUESTION_FROM,
"num_beams":5,
"early_stopping":True,
"min_length": 100,"wait_for_model":True})[0]['generated_text'].capitalize()
question_ids = rephrase_question_where(question_ids)
list_of_ques_where.append(f"""Q{j+1}:{question_ids}""")
list_of_ans_where.append(f"""Claim :\n {answer[j]}""")
input_evidence = f"answer_the_next_question_from_context: {question_ids} context: {evidence}"
time.sleep(5)
answer_evidence = query_evidence({"inputs":input_evidence,"truncation":True,"wait_for_model":True})[0]['generated_text']
if answer_evidence.lower() in evidence.lower():
list_of_evidence_answer_where.append(f"""Answer retrieved from evidence :\n {answer_evidence}""")
else:
answer_evidence=""
list_of_evidence_answer_where.append(f"""No mention of 'where'in any related documents.""")
threshold = 0.2
list_of_pairs = [(answer_evidence, answer[j])]
rouge_l_score = calc_rouge_l_score(answer_evidence, answer[j])
if rouge_l_score >= threshold:
verification_status = '✅ Verified Valid'
elif rouge_l_score == 0:
verification_status = '❔ Not verifiable'
else:
verification_status = '❌ Verified False'
rouge_l_scores.append(verification_status)
except:
pass
else:
list_of_ques_where="No claims"
list_of_ans_where=""
list_of_evidence_answer_where="No mention of 'where'in any related documents."
rouge_l_scores="❔ Not verifiable"
return list_of_ques_where,list_of_ans_where,list_of_evidence_answer_where,rouge_l_scores
#------------------------------------------------------
#------------------------------------------------------------
# if claim_text:
# if evidence_text:
# df=claim(claim_text)
# df["evidence"]=evidence_text
# final_df = pd.DataFrame(columns=['Who Claims', 'What Claims', 'When Claims', 'Where Claims', 'Why Claims'])
# final_df["Who Claims"]=gen_qa_who(df)
# final_df["What Claims"]=gen_qa_what(df)
# final_df["When Claims"]=gen_qa_when(df)
# final_df["Where Claims"]=gen_qa_where(df)
# final_df["Why Claims"]=gen_qa_why(df)
# st.table(final_df)
# st.write(df["claim"])
# st.write(df["evidence"])
# # st.write(gen_qa_who(df))
# # st.table(final_df)
# if claim_text and evidence_text:
# st.write("You entered: ", claim_text)
# st.write("You entered: ", evidence_text)
# st.caption(':green[Kindly hold on for a few minutes while the QA pairs are being generated]')
# df=claim(claim_text)
# df["evidence"]=evidence_text
# final_df = pd.DataFrame(columns=['Who Claims', 'What Claims', 'When Claims', 'Where Claims', 'Why Claims'])
# final_df["Who Claims"]=gen_qa_who(df)
# final_df["What Claims"]=gen_qa_what(df)
# final_df["When Claims"]=gen_qa_when(df)
# final_df["Where Claims"]=gen_qa_where(df)
# final_df["Why Claims"]=gen_qa_why(df)
# st.table(final_df)
# st.write(df["claim"])
# st.write(df["evidence"])
if claim_text and evidence_text:
# st.write("You entered: ", claim_text)
# st.write("You entered: ", evidence_text)
st.caption(':green[Kindly hold on for a few minutes while the QA pairs are being generated]')
df=claim(claim_text)
df["evidence"]=evidence_text
lst1=gen_qa_who(df)
lst2=gen_qa_what(df)
lst3=gen_qa_when(df)
lst4=gen_qa_where(df)
lst5=gen_qa_why(df)
output1=[]
if 'No claims' in lst1[0]:
output1=[item for item in lst1]
else:
for i in range(len(lst1[0])):
output1.append(lst1[0][i])
output1.append(lst1[1][i])
output1.append(lst1[2][i])
output1.append(lst1[3][i])
output2=[]
if 'No claims' in lst2[0]:
output2=[item for item in lst2]
else:
for i in range(len(lst2[0])):
output2.append(lst2[0][i])
output2.append(lst2[1][i])
output2.append(lst2[2][i])
output2.append(lst2[3][i])
output3=[]
if 'No claims' in lst3[0]:
output3=[item for item in lst3]
else:
for i in range(len(lst3[0])):
output3.append(lst3[0][i])
output3.append(lst3[1][i])
output3.append(lst3[2][i])
output3.append(lst3[3][i])
output4=[]
if 'No claims' in lst4[0]:
output4=[item for item in lst4]
else:
for i in range(len(lst4[0])):
output4.append(lst4[0][i])
output4.append(lst4[1][i])
output4.append(lst4[2][i])
output4.append(lst4[3][i])
output5=[]
if 'No claims' in lst5[0]:
output5=[item for item in lst5]
else:
for i in range(len(lst5[0])):
output5.append(lst5[0][i])
output5.append(lst5[1][i])
output5.append(lst5[2][i])
output5.append(lst5[3][i])
max_rows = max(len(output1), len(output2), len(output3), len(output4), len(output5))
final_df = pd.DataFrame(columns=['Who Claims', 'What Claims', 'When Claims', 'Where Claims', 'Why Claims'])
# add the data to the dataframe
final_df['Who Claims'] = output1 + [''] * (max_rows - len(output1))
final_df['What Claims'] = output2 + [''] * (max_rows - len(output2))
final_df['When Claims'] = output3 + [''] * (max_rows - len(output3))
final_df['Where Claims'] = output4 + [''] * (max_rows - len(output4))
final_df['Why Claims'] = output5 + [''] * (max_rows - len(output5))
st.write(f"""Claim : {claim_text}""")
st.write(f"""Evidence : {evidence_text}""")
st.table(final_df)
# st.write(df["claim"])
# st.write(df["evidence"])