File size: 33,036 Bytes
96d3362
 
 
718d231
96d3362
fffe047
96d3362
bc2a174
 
 
96d3362
bc2a174
96d3362
 
 
 
 
 
 
 
fd0f496
bc2a174
96d3362
 
 
 
 
ba42f25
0f98ea0
d3f89de
0f98ea0
 
 
 
 
d3f89de
4557ff8
 
0f98ea0
fffe047
 
 
f0f4ea0
5a28255
fffe047
62e2909
8c5938d
a5b1363
de3a3ea
b6433bb
aa31d18
b6433bb
 
 
 
8c5938d
4ba24c3
 
8c5938d
de3a3ea
 
48ae6b7
de3a3ea
48ae6b7
8c5938d
de3a3ea
00765ea
18edfec
96d3362
18edfec
 
 
 
eeff5a7
aa31d18
02664bd
 
b6433bb
4ba24c3
02664bd
 
b1c0e1c
 
18edfec
ad8e8ee
6a0831e
48ac9c9
a3eabb7
ad8e8ee
0d89b24
a3eabb7
0d89b24
 
 
eeff5a7
b77a280
33db681
ad8e8ee
6354e98
96d3362
 
718d231
96d3362
 
 
09bf063
96d3362
dc27637
aef128b
 
 
 
 
 
 
 
96d3362
ed05241
96d3362
ef00b69
718d231
 
 
 
 
 
 
 
96d3362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc27637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef128b
dc27637
 
96d3362
dc27637
 
 
 
718d231
 
96d3362
 
 
dc27637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef128b
dc27637
 
96d3362
dc27637
 
 
96d3362
 
 
 
dc27637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef128b
dc27637
 
96d3362
dc27637
96d3362
dc27637
96d3362
 
 
 
dc27637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef128b
dc27637
 
96d3362
dc27637
96d3362
dc27637
96d3362
 
 
 
 
dc27637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef128b
dc27637
 
96d3362
dc27637
718d231
dc27637
96d3362
 
 
 
 
b77a280
718d231
96d3362
 
718d231
 
 
 
 
 
96d3362
 
b77a280
718d231
 
 
 
 
 
b77a280
718d231
 
 
 
 
 
 
 
30d861e
718d231
 
 
 
 
 
 
 
 
 
835c7af
718d231
c493c66
 
 
 
 
 
 
 
 
 
46bdc18
 
1ef5427
835c7af
fd0f496
c493c66
46bdc18
c493c66
 
 
 
 
 
 
66afc93
c493c66
66afc93
c493c66
66afc93
c493c66
d9d5b25
 
718d231
 
 
 
66afc93
381ad46
96d3362
b77a280
718d231
 
 
 
 
 
 
 
30d861e
718d231
 
 
 
 
 
 
 
 
 
835c7af
718d231
 
 
589e750
718d231
 
 
 
 
 
 
46bdc18
718d231
835c7af
fd0f496
718d231
46bdc18
718d231
 
 
 
 
 
 
 
66afc93
718d231
66afc93
718d231
66afc93
718d231
 
 
 
 
 
 
66afc93
381ad46
718d231
b77a280
718d231
 
 
 
 
 
 
 
 
30d861e
718d231
 
 
 
 
 
 
 
 
 
835c7af
718d231
 
 
589e750
718d231
 
 
 
 
 
 
46bdc18
718d231
835c7af
fd0f496
718d231
46bdc18
718d231
 
 
 
 
 
 
66afc93
718d231
66afc93
718d231
66afc93
718d231
 
 
 
 
 
 
66afc93
381ad46
718d231
 
b77a280
718d231
 
 
 
 
 
 
 
30d861e
718d231
 
 
 
 
 
 
 
 
 
835c7af
718d231
 
 
589e750
718d231
 
 
 
 
 
 
46bdc18
718d231
835c7af
fd0f496
718d231
46bdc18
718d231
 
 
 
 
 
 
66afc93
718d231
66afc93
718d231
66afc93
718d231
 
 
 
 
 
 
66afc93
381ad46
718d231
 
b77a280
718d231
 
 
 
 
 
 
 
30d861e
718d231
 
 
 
 
 
 
 
 
 
835c7af
718d231
 
 
589e750
2d1590e
718d231
 
 
 
 
 
46bdc18
718d231
835c7af
fd0f496
718d231
46bdc18
718d231
 
 
 
 
 
 
66afc93
718d231
66afc93
718d231
66afc93
718d231
 
 
 
 
 
 
66afc93
381ad46
718d231
 
96d3362
 
2c3cf7b
 
 
 
 
606cf69
 
2c3cf7b
 
 
 
 
 
 
 
 
 
 
46bdc18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c08f173
834dbac
 
b77a280
2c3cf7b
 
4f6b5e5
 
 
 
 
46bdc18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c3cf7b
46bdc18
 
 
 
 
9d334f4
b0e98cc
 
2c3cf7b
9d334f4
 
46bdc18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
import streamlit as st
from transformers import pipeline
import re
import time
import requests
from PIL import Image


HF_SPACES_API_KEY = st.secrets["HF_token"]

API_URL = "https://api-inference.huggingface.co/models/microsoft/prophetnet-large-uncased-squad-qg"
headers = {"Authorization": HF_SPACES_API_KEY}

def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.json()


#-----------------------------------------------------------

API_URL_evidence = "https://api-inference.huggingface.co/models/google/flan-t5-xxl"
headers_evidence = {"Authorization": HF_SPACES_API_KEY}

def query_evidence(payload):
	response = requests.post(API_URL_evidence, headers=headers_evidence, json=payload)
	return response.json()

#-----------------------------------------------------------
st.title('Welcome to :blue[FACTIFY - 5WQA] ') 

# st.set_page_config(
#     page_title="Welcome to :blue[FACTIFY - 5WQA]",
#     layout="wide"
# )
# st.markdown("<center> <h2> 5W Aspect-based Fact Verification through Question Answering :blue[Web Demo]", unsafe_allow_html=True)

#st.markdown("<center>Ask a question about the collapse of the Silicon Valley Bank (SVB).</center>", unsafe_allow_html=True)

st.header('5W Aspect-based Fact Verification through Question Answering :blue[Web Demo]')
image = Image.open('5W QA Illustration.jpg')
st.image(image, caption='5W QA Generation Pipeline')

st.subheader('Here are a few steps to begin exploring and interacting with this demo.')
st.caption('First you need to input your claim.')
st.caption('Then you need to input your evidence.')
st.caption('Upon completing these two steps, kindly wait for a minute to receive the results.')

st.caption('Start by inputting the following instance of a claim and corresponding evidence into the designated text fields.')
#-----------------------------------------------------------------------------------------------

st.caption('**Example 1**')
st.caption(''':green[Claim:] :point_right: Moderna's legal actions towards Pfizer-BioNTech indicate that the development of COVID-19 vaccines was underway prior to the commencement of the pandemic.''')

st.caption(''':green[Evidence:] :point_right: Moderna is suing Pfizer and BioNTech for patent infringement, alleging the rival companies used key parts of its mRNA technology to develop their COVID-19 vaccine. Moderna’s patents were filed between 2010 and 2016.
 	''')

# st.caption(''':green[Evidence:] :point_right: Due to the consumers increasingly relying on online retailers, 
# Amazon planned to hire over 99,000 workers in the warehouse and delivery sector during the Pandemic in the USA.''')

#-----------------------------------------------------------------------------------------------
st.caption('**Example 2**')
st.caption(''':green[Claim:] :point_right: In China, Buddhist monks and nuns lived together in places such as the Yunnan monastery.''')

st.caption(''':green[Evidence:] :point_right: Monastics in Japan are particularly exceptional in the Buddhist tradition because the monks and nuns can marry after receiving their higher ordination . 	''')

#-----------------------------------------------------------------------------------------------
st.caption('**Example 3**')
st.caption(''':green[Claim:] :point_right: In Batman, Penguin hydrates the henchmen with water contaminated with atomic waste.''')

st.caption(''':green[Evidence:] :point_right: And Penguin even schemes his way into the Batcave along with five dehydrated henchmen ; 
this plan fails when the henchmen are unexpectedly killed 
when he mistakenly rehydrates them with heavy water contaminated with atomic waste , 
regularly used to recharge the Batcave s atomic pile . 	''')

#-----------------------------------------------------------

st.caption('**Example 4**')
st.caption(''':green[Claim:] :point_right: Amazon to hire 100K workers and until April Amazon will raise hourly wages by $2  due to pandemic demand.''')
st.caption(''':green[Evidence:] : Due to the consumers increasingly relying on online retailers, Amazon planned to hire over 99,000 workers in the warehouse and delivery sector during the Pandemic in the USA.''')
#-----------------------------------------------------------

def proc():
    st.write(st.session_state.text_key)

    
claim_text=st.text_area("Enter your claim:", on_change=proc, key='text_key')


        
evidence_text=st.text_area("Enter your evidence:")

# form_evidence = st.form(key='my_evidence')
# form_evidence.text_input(label='Enter your evidence')
# evidence_text = form_evidence.form_submit_button(label='Submit')

# if evidence_text:
    #st.caption(':green[Kindly hold on for a few minutes while the QA pairs are being generated]')
    #st.caption(':blue[At times, you may encounter null/none outputs, which could be a result of a delay in loading the models through the API. If you experience this problem, kindly try again after a few minutes.]')


import pandas as pd
from rouge_score import rouge_scorer
import numpy as np
from allennlp.predictors.predictor import Predictor
import allennlp_models.tagging
predictor = Predictor.from_path("structured-prediction-srl-bert.tar.gz")

#---------------------------------------------------------------
list_of_pronouns = ["I", "you", "he", "she", "it", "we", "they", "me", "him", "her", "us", "them", 
            "mine", "yours", "his", "hers", "its", "ours", "theirs",
            "this", "that", "these", "those",
            "myself", "yourself", "himself", "herself", "itself", "ourselves", "yourselves", "themselves",
            "who", "whom", "what", "which", "whose",
            "all", "another", "any", "anybody", "anyone", "anything", "both", "each", "either", 
            "everybody", "everyone", "everything", "few", "many", "neither", "nobody", "none", "nothing",
            "one", "other", "several", "some", "somebody", "someone", "something"]
#---------------------------------------------------------------
# @st.cache
def claim(text):
    import re
    def remove_special_chars(text):
        # Remove special characters that are not in between numbers
        text = re.sub(r'(?<!\d)[^\w\s]+(?!\d)', '', text)

        return text

    df = pd.DataFrame({'claim' : remove_special_chars(text)},index=[0])

    def srl_allennlp(sent):
      try:
        #result = predictor.predict(sentence=sent)['verbs'][0]['description']
        #result = predictor.predict(sentence=sent)['verbs'][0]['tags']
        result = predictor.predict(sentence=sent)
        return(result)
      except IndexError: 
        pass
      #return(predictor.predict(sentence=sent))

    df['allennlp_srl'] = df['claim'].apply(lambda x: srl_allennlp(x))

    df['number_of_verbs'] = ''
    df['verbs_group'] = ''
    df['words'] = ''
    df['verbs'] = ''
    df['modified'] =''

    col1 = df['allennlp_srl']
    for i in range(len(col1)):
      num_verb = len(col1[i]['verbs'])
      df['number_of_verbs'][i] = num_verb
      df['verbs_group'][i] = col1[i]['verbs']
      df['words'][i] = col1[i]['words']

      x=[]
      for verb in range(len(col1[i]['verbs'])):
        x.append(col1[i]['verbs'][verb]['verb'])
      df['verbs'][i] = x

      verb_dict ={}
      desc = []
      for j in range(len(col1[i]['verbs'])):
        string = (col1[i]['verbs'][j]['description'])
        string = string.replace("ARG0", "who")
        string = string.replace("ARG1", "what")
        string = string.replace("ARGM-TMP", "when")
        string = string.replace("ARGM-LOC", "where")
        string = string.replace("ARGM-CAU", "why")
        desc.append(string)
        verb_dict[col1[i]['verbs'][j]['verb']]=string
      df['modified'][i] = verb_dict


    #----------FOR COLUMN "WHO"------------#
    df['who'] = ''
    for j in range(len(df['modified'])):
        val_list = []
        val_string = ''
        for k,v in df['modified'][j].items():
            val_list.append(v)

        who = set() # use set to remove duplicates
        for indx in range(len(val_list)):
            val_string = val_list[indx]
            pos = val_string.find("who: ")
            substr = ''

            if pos != -1:
                for i in range(pos+5, len(val_string)):
                    if val_string[i] == "]":
                        break
                    else:
                        substr = substr + val_string[i]
                substr = substr.strip() # remove leading/trailing white space
                pronouns = list_of_pronouns
                if substr.lower() not in pronouns and not substr.lower().endswith("'s"): # remove pronouns and possessive pronouns
                    who.add(substr)
            else:
                pass

        df['who'][j] = "<sep>".join(who)

#     else:
#         continue
    #----------FOR COLUMN "WHAT"------------#
    df['what'] = ''
    for j in range(len(df['modified'])):
        val_list = []
        val_string = ''
        for k,v in df['modified'][j].items():
            val_list.append(v)

        what = set() # use set to remove duplicates
        for indx in range(len(val_list)):
            val_string = val_list[indx]
            pos = val_string.find("what: ")
            substr = ''

            if pos != -1:
                for i in range(pos+5, len(val_string)):
                    if val_string[i] == "]":
                        break
                    else:
                        substr = substr + val_string[i]
                substr = substr.strip() # remove leading/trailing white space
                pronouns = list_of_pronouns
                if substr.lower() not in pronouns and not substr.lower().endswith("'s"): # remove pronouns and possessive pronouns
                    what.add(substr)
            else:
                pass

        df['what'][j] = "<sep>".join(what)

    #----------FOR COLUMN "WHY"------------#
    df['why'] = ''
    for j in range(len(df['modified'])):
        val_list = []
        val_string = ''
        for k,v in df['modified'][j].items():
            val_list.append(v)

        why = set() # use set to remove duplicates
        for indx in range(len(val_list)):
            val_string = val_list[indx]
            pos = val_string.find("why: ")
            substr = ''

            if pos != -1:
                for i in range(pos+5, len(val_string)):
                    if val_string[i] == "]":
                        break
                    else:
                        substr = substr + val_string[i]
                substr = substr.strip() # remove leading/trailing white space
                pronouns = list_of_pronouns
                if substr.lower() not in pronouns and not substr.lower().endswith("'s"): # remove pronouns and possessive pronouns
                    why.add(substr)
            else:
                pass

        df['why'][j] = "<sep>".join(why)

     #----------FOR COLUMN "WHEN"------------#
    df['when'] = ''
    for j in range(len(df['modified'])):
        val_list = []
        val_string = ''
        for k,v in df['modified'][j].items():
            val_list.append(v)

        when = set() # use set to remove duplicates
        for indx in range(len(val_list)):
            val_string = val_list[indx]
            pos = val_string.find("when: ")
            substr = ''

            if pos != -1:
                for i in range(pos+5, len(val_string)):
                    if val_string[i] == "]":
                        break
                    else:
                        substr = substr + val_string[i]
                substr = substr.strip() # remove leading/trailing white space
                pronouns = list_of_pronouns
                if substr.lower() not in pronouns and not substr.lower().endswith("'s"): # remove pronouns and possessive pronouns
                    when.add(substr)
            else:
                pass

        df['when'][j] = "<sep>".join(when)


    #----------FOR COLUMN "WHERE"------------#
    df['where'] = ''
    for j in range(len(df['modified'])):
        val_list = []
        val_string = ''
        for k,v in df['modified'][j].items():
            val_list.append(v)

        where = set() # use set to remove duplicates
        for indx in range(len(val_list)):
            val_string = val_list[indx]
            pos = val_string.find("where: ")
            substr = ''

            if pos != -1:
                for i in range(pos+5, len(val_string)):
                    if val_string[i] == "]":
                        break
                    else:
                        substr = substr + val_string[i]
                substr = substr.strip() # remove leading/trailing white space
                pronouns = list_of_pronouns
                if substr.lower() not in pronouns and not substr.lower().endswith("'s"): # remove pronouns and possessive pronouns
                    where.add(substr)
            else:
                pass

        df['where'][j] = "<sep>".join(where)


    data=df[["claim","who","what","why","when","where"]].copy()    
    return data
#-------------------------------------------------------------------------
# @st.cache
def split_ws(input_list, delimiter="<sep>"):
    output_list = []
    for item in input_list:
        split_item = item.split(delimiter)
        for sub_item in split_item:
            sub_item = sub_item.strip()
            if sub_item:
                output_list.append(sub_item)
    return output_list

#--------------------------------------------------------------------------    
# @st.cache
def calc_rouge_l_score(list_of_evidence, list_of_ans):
    scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
    scores = scorer.score(' '.join(list_of_evidence), ' '.join(list_of_ans))
    return scores['rougeL'].fmeasure
#-------------------------------------------------------------------------
    
# @st.cache
def rephrase_question_who(question):
    if not question.lower().startswith("who"):
        words = question.split()
        words[0] = "Who"
        return " ".join(words)
    else:
        return question
#------------------------------------------------------------------------    
# @st.cache
def gen_qa_who(df):
    list_of_ques_who=[]
    list_of_ans_who=[]
    list_of_evidence_answer_who=[]
    rouge_l_scores=[]
    for i,row in df.iterrows():
        srl=df["who"][i]
        claim=df['claim'][i]
        answer= split_ws(df["who"])
        evidence=df["evidence"][i]
        time.sleep(5)
        if srl!="":
            try:
                for j in range(0,len(answer)):
                    FACT_TO_GENERATE_QUESTION_FROM = f"""{answer[j]} [SEP] {claim}"""
                    #FACT_TO_GENERATE_QUESTION_FROM = f"""generate_who_based_question_from_context_using_the_next_answer:{answer[j]} [SEP] context:{claim}"""
                    #time.sleep(10)
                    question_ids = query({"inputs":FACT_TO_GENERATE_QUESTION_FROM, 
                              "num_beams":5, 
                              "early_stopping":True,
                                         "min_length": 100,"wait_for_model":True})[0]['generated_text'].capitalize()
                    question_ids = rephrase_question_who(question_ids)
                    list_of_ques_who.append(f"""Q{j+1} :\n {question_ids}""")
                    list_of_ans_who.append(f"""Claim :\n {answer[j]}""")
                    input_evidence = f"answer_the_next_question_from_context: {question_ids} context: {evidence}"
                    time.sleep(5)
                    answer_evidence = query_evidence({"inputs":input_evidence,"truncation":True,"wait_for_model":True})[0]['generated_text']
                    if answer_evidence.lower() in evidence.lower():
                        list_of_evidence_answer_who.append(f"""Answer retrieved from evidence :\n {answer_evidence}""")
                    else:
                        answer_evidence=""
                        list_of_evidence_answer_who.append(f"""No mention of 'who'in any related documents.""")
                    threshold = 0.2
                    list_of_pairs = [(answer_evidence, answer[j])]
                    rouge_l_score = calc_rouge_l_score(answer_evidence, answer[j])
                    if rouge_l_score >= threshold:
                        verification_status = 'βœ… Verified Valid'
                    elif rouge_l_score == 0:
                        verification_status = '❔ Not verifiable'
                    else:
                        verification_status = '❌ Verified False'
                    rouge_l_scores.append(verification_status)
            except:
                pass
        else:
            list_of_ques_who="No claims"
            list_of_ans_who=""
            list_of_evidence_answer_who="No mention of 'who'in any related documents."
            rouge_l_scores="❔ Not verifiable"
    return list_of_ques_who,list_of_ans_who,list_of_evidence_answer_who,rouge_l_scores
#------------------------------------------------------------    
# @st.cache
def rephrase_question_what(question):
    if not question.lower().startswith("what"):
        words = question.split()
        words[0] = "What"
        return " ".join(words)
    else:
        return question
#----------------------------------------------------------        
# @st.cache
def gen_qa_what(df):
    list_of_ques_what=[]
    list_of_ans_what=[]
    list_of_evidence_answer_what=[]
    rouge_l_scores=[]
    for i,row in df.iterrows():
        srl=df["what"][i]
        claim=df['claim'][i]
        answer= split_ws(df["what"])
        evidence=df["evidence"][i]
        time.sleep(5)
        if srl!="":
            try:
                for j in range(0,len(answer)):
                    FACT_TO_GENERATE_QUESTION_FROM = f"""{answer[j]} [SEP] context:{claim}"""
                    #time.sleep(10)
                    question_ids = query({"inputs":FACT_TO_GENERATE_QUESTION_FROM, 
                              "num_beams":5, 
                              "early_stopping":True,
                                         "min_length": 100,"wait_for_model":True})[0]['generated_text'].capitalize()
                    question_ids = rephrase_question_what(question_ids)
                    list_of_ques_what.append(f"""Q{j+1}:{question_ids}""")
                    list_of_ans_what.append(f"""Claim :\n {answer[j]}""")
                    input_evidence = f"answer_the_next_question_from_context: {question_ids} context: {evidence}"
                    time.sleep(5)
                    answer_evidence = query_evidence({"inputs":input_evidence,"truncation":True,"wait_for_model":True})[0]['generated_text']
                    if answer_evidence.lower() in evidence.lower():
                        list_of_evidence_answer_what.append(f"""Answer retrieved from evidence :\n {answer_evidence}""")
                        
                    else:
                        answer_evidence=""
                        list_of_evidence_answer_what.append(f"""No mention of 'what'in any related documents.""")
                    threshold = 0.2
                    list_of_pairs = [(answer_evidence, answer[j])]
                    rouge_l_score = calc_rouge_l_score(answer_evidence, answer[j])
                    if rouge_l_score >= threshold:
                        verification_status = 'βœ… Verified Valid'
                    elif rouge_l_score == 0:
                        verification_status = '❔ Not verifiable'
                    else:
                        verification_status = '❌ Verified False'
                    rouge_l_scores.append(verification_status)
            except:
                pass
        else:
            list_of_ques_what="No claims"
            list_of_ans_what=""
            list_of_evidence_answer_what="No mention of 'what'in any related documents."
            rouge_l_scores="❔ Not verifiable"
    return list_of_ques_what,list_of_ans_what,list_of_evidence_answer_what,rouge_l_scores
#----------------------------------------------------------    
# @st.cache
def rephrase_question_why(question):
    if not question.lower().startswith("why"):
        words = question.split()
        words[0] = "Why"
        return " ".join(words)
    else:
        return question

#---------------------------------------------------------        
# @st.cache
def gen_qa_why(df):
    list_of_ques_why=[]
    list_of_ans_why=[]
    list_of_evidence_answer_why=[]
    rouge_l_scores=[]
    for i,row in df.iterrows():
        srl=df["why"][i]
        claim=df['claim'][i]
        answer= split_ws(df["why"])
        evidence=df["evidence"][i]
        time.sleep(5)
        if srl!="":
            try:
                for j in range(0,len(answer)):
                    FACT_TO_GENERATE_QUESTION_FROM = f"""{answer[j]} [SEP] {claim}"""
                    #time.sleep(10)
                    question_ids = query({"inputs":FACT_TO_GENERATE_QUESTION_FROM, 
                              "num_beams":5, 
                              "early_stopping":True,
                                         "min_length": 100,"wait_for_model":True})[0]['generated_text'].capitalize()
                    question_ids = rephrase_question_why(question_ids)
                    list_of_ques_why.append(f"""Q{j+1}:{question_ids}""")
                    list_of_ans_why.append(f"""Claim :\n {answer[j]}""")
                    input_evidence = f"answer_the_next_question_from_context: {question_ids} context: {evidence}"
                    time.sleep(5)
                    answer_evidence = query_evidence({"inputs":input_evidence,"truncation":True,"wait_for_model":True})[0]['generated_text']
                    if answer_evidence.lower() in evidence.lower():
                        list_of_evidence_answer_why.append(f"""Answer retrieved from evidence :\n {answer_evidence}""")
                    else:
                        answer_evidence=""
                        list_of_evidence_answer_why.append(f"""No mention of 'why'in any related documents.""")
                    threshold = 0.2
                    list_of_pairs = [(answer_evidence, answer[j])]
                    rouge_l_score = calc_rouge_l_score(answer_evidence, answer[j])
                    if rouge_l_score >= threshold:
                        verification_status = 'βœ… Verified Valid'
                    elif rouge_l_score == 0:
                        verification_status = '❔ Not verifiable'
                    else:
                        verification_status = '❌ Verified False'
                    rouge_l_scores.append(verification_status)
            except:
                pass
        else:
            list_of_ques_why="No claims"
            list_of_ans_why=""
            list_of_evidence_answer_why="No mention of 'why'in any related documents."
            rouge_l_scores="❔ Not verifiable"
    return list_of_ques_why,list_of_ans_why,list_of_evidence_answer_why,rouge_l_scores

#---------------------------------------------------------    
# @st.cache
def rephrase_question_when(question):
    if not question.lower().startswith("when"):
        words = question.split()
        words[0] = "When"
        return " ".join(words)
    else:
        return question
#---------------------------------------------------------        
# @st.cache
def gen_qa_when(df):
    list_of_ques_when=[]
    list_of_ans_when=[]
    list_of_evidence_answer_when=[]
    rouge_l_scores=[]
    for i,row in df.iterrows():
        srl=df["when"][i]
        claim=df['claim'][i]
        answer= split_ws(df["when"])
        evidence=df["evidence"][i]
        time.sleep(5)
        if srl!="":
            try:
                for j in range(0,len(answer)):
                    FACT_TO_GENERATE_QUESTION_FROM = f"""{answer[j]} [SEP] {claim}"""
                    #time.sleep(10)
                    question_ids = query({"inputs":FACT_TO_GENERATE_QUESTION_FROM, 
                              "num_beams":5, 
                              "early_stopping":True,
                                         "min_length": 100,"wait_for_model":True})[0]['generated_text'].capitalize()
                    question_ids = rephrase_question_when(question_ids)
                    list_of_ques_when.append(f"""Q{j+1}:{question_ids}""")
                    list_of_ans_when.append(f"""Claim :\n {answer[j]}""")
                    input_evidence = f"answer_the_next_question_from_context: {question_ids} context: {evidence}"
                    time.sleep(5)
                    answer_evidence = query_evidence({"inputs":input_evidence,"truncation":True,"wait_for_model":True})[0]['generated_text']
                    if answer_evidence.lower() in evidence.lower():
                        list_of_evidence_answer_when.append(f"""Answer retrieved from evidence :\n {answer_evidence}""")
                    else:
                        answer_evidence=""
                        list_of_evidence_answer_when.append(f"""No mention of 'when'in any related documents.""")
                    threshold = 0.2
                    list_of_pairs = [(answer_evidence, answer[j])]
                    rouge_l_score = calc_rouge_l_score(answer_evidence, answer[j])
                    if rouge_l_score >= threshold:
                        verification_status = 'βœ… Verified Valid'
                    elif rouge_l_score == 0:
                        verification_status = '❔ Not verifiable'
                    else:
                        verification_status = '❌ Verified False'
                    rouge_l_scores.append(verification_status)
            except:
                pass
        else:
            list_of_ques_when="No claims"
            list_of_ans_when=""
            list_of_evidence_answer_when="No mention of 'when'in any related documents."
            rouge_l_scores="❔ Not verifiable"
    return list_of_ques_when,list_of_ans_when,list_of_evidence_answer_when,rouge_l_scores

#------------------------------------------------------   
# @st.cache
def rephrase_question_where(question):
    if not question.lower().startswith("where"):
        words = question.split()
        words[0] = "Where"
        return " ".join(words)
    else:
        return question
#------------------------------------------------------      
# @st.cache
def gen_qa_where(df):
    list_of_ques_where=[]
    list_of_ans_where=[]
    list_of_evidence_answer_where=[]
    rouge_l_scores=[]
    for i,row in df.iterrows():
        srl=df["where"][i]
        claim=df['claim'][i]
        answer= split_ws(df["where"])
        evidence=df["evidence"][i]
        time.sleep(5)
        if srl!="":
            try:
                for j in range(0,len(answer)):
                    FACT_TO_GENERATE_QUESTION_FROM = f"""{answer[j]} [SEP] {claim}"""
                    time.sleep(10)
                    question_ids = query({"inputs":FACT_TO_GENERATE_QUESTION_FROM, 
                              "num_beams":5, 
                              "early_stopping":True,
                                         "min_length": 100,"wait_for_model":True})[0]['generated_text'].capitalize()
                    question_ids = rephrase_question_where(question_ids)
                    list_of_ques_where.append(f"""Q{j+1}:{question_ids}""")
                    list_of_ans_where.append(f"""Claim :\n {answer[j]}""")
                    input_evidence = f"answer_the_next_question_from_context: {question_ids} context: {evidence}"
                    time.sleep(5)
                    answer_evidence = query_evidence({"inputs":input_evidence,"truncation":True,"wait_for_model":True})[0]['generated_text']
                    if answer_evidence.lower() in evidence.lower():
                        list_of_evidence_answer_where.append(f"""Answer retrieved from evidence :\n {answer_evidence}""")
                    else:
                        answer_evidence=""
                        list_of_evidence_answer_where.append(f"""No mention of 'where'in any related documents.""")
                    threshold = 0.2
                    list_of_pairs = [(answer_evidence, answer[j])]
                    rouge_l_score = calc_rouge_l_score(answer_evidence, answer[j])
                    if rouge_l_score >= threshold:
                        verification_status = 'βœ… Verified Valid'
                    elif rouge_l_score == 0:
                        verification_status = '❔ Not verifiable'
                    else:
                        verification_status = '❌ Verified False'
                    rouge_l_scores.append(verification_status)
            except:
                pass
        else:
            list_of_ques_where="No claims"
            list_of_ans_where=""
            list_of_evidence_answer_where="No mention of 'where'in any related documents."
            rouge_l_scores="❔ Not verifiable"
    return list_of_ques_where,list_of_ans_where,list_of_evidence_answer_where,rouge_l_scores
#------------------------------------------------------    


#------------------------------------------------------------  
# if claim_text:
#     if evidence_text:
#         df=claim(claim_text)
#         df["evidence"]=evidence_text
#         final_df = pd.DataFrame(columns=['Who Claims', 'What Claims', 'When Claims', 'Where Claims', 'Why Claims'])

        
#         final_df["Who Claims"]=gen_qa_who(df)
#         final_df["What Claims"]=gen_qa_what(df)
#         final_df["When Claims"]=gen_qa_when(df)
#         final_df["Where Claims"]=gen_qa_where(df)
#         final_df["Why Claims"]=gen_qa_why(df)
#         st.table(final_df)
#         st.write(df["claim"])
#         st.write(df["evidence"])
#         # st.write(gen_qa_who(df))
#         # st.table(final_df)

# if claim_text and evidence_text:
#     st.write("You entered: ", claim_text)
#     st.write("You entered: ", evidence_text)
#     st.caption(':green[Kindly hold on for a few minutes while the QA pairs are being generated]')
#     df=claim(claim_text)
#     df["evidence"]=evidence_text
    # final_df = pd.DataFrame(columns=['Who Claims', 'What Claims', 'When Claims', 'Where Claims', 'Why Claims'])
    # final_df["Who Claims"]=gen_qa_who(df)
    # final_df["What Claims"]=gen_qa_what(df)
    # final_df["When Claims"]=gen_qa_when(df)
    # final_df["Where Claims"]=gen_qa_where(df)
    # final_df["Why Claims"]=gen_qa_why(df)
    # st.table(final_df)
    # st.write(df["claim"])
    # st.write(df["evidence"])

if claim_text and evidence_text:
    # st.write("You entered: ", claim_text)
    # st.write("You entered: ", evidence_text)
    st.caption(':green[Kindly hold on for a few minutes while the QA pairs are being generated]')
    df=claim(claim_text)
    df["evidence"]=evidence_text
    lst1=gen_qa_who(df)
    lst2=gen_qa_what(df)
    lst3=gen_qa_when(df)
    lst4=gen_qa_where(df)
    lst5=gen_qa_why(df)

    output1=[]
    if 'No claims' in lst1[0]:
        output1=[item for item in lst1]
    else:
        for i in range(len(lst1[0])):
            output1.append(lst1[0][i])
            output1.append(lst1[1][i])
            output1.append(lst1[2][i])
            output1.append(lst1[3][i])
    output2=[]
    if 'No claims' in lst2[0]:
        output2=[item for item in lst2]
    else:
        for i in range(len(lst2[0])):
            output2.append(lst2[0][i])
            output2.append(lst2[1][i])
            output2.append(lst2[2][i])
            output2.append(lst2[3][i])
    output3=[]
    if 'No claims' in lst3[0]:
        output3=[item for item in lst3]
    else:
        for i in range(len(lst3[0])):
            output3.append(lst3[0][i])
            output3.append(lst3[1][i])
            output3.append(lst3[2][i])
            output3.append(lst3[3][i])
    output4=[]
    if 'No claims' in lst4[0]:
        output4=[item for item in lst4]
    else:
        for i in range(len(lst4[0])):
            output4.append(lst4[0][i])
            output4.append(lst4[1][i])
            output4.append(lst4[2][i])
            output4.append(lst4[3][i])
    output5=[]
    if 'No claims' in lst5[0]:
        output5=[item for item in lst5]
    else:
        for i in range(len(lst5[0])):
            output5.append(lst5[0][i])
            output5.append(lst5[1][i])
            output5.append(lst5[2][i])
            output5.append(lst5[3][i])
    max_rows = max(len(output1), len(output2), len(output3), len(output4), len(output5))
    final_df = pd.DataFrame(columns=['Who Claims', 'What Claims', 'When Claims', 'Where Claims', 'Why Claims'])
    # add the data to the dataframe
    final_df['Who Claims'] = output1 + [''] * (max_rows - len(output1))
    final_df['What Claims'] = output2 + [''] * (max_rows - len(output2))
    final_df['When Claims'] = output3 + [''] * (max_rows - len(output3))
    final_df['Where Claims'] = output4 + [''] * (max_rows - len(output4))
    final_df['Why Claims'] = output5 + [''] * (max_rows - len(output5))  
    st.write(f"""Claim : {claim_text}""")
    st.write(f"""Evidence : {evidence_text}""")  
    st.table(final_df)
    # st.write(df["claim"])
    # st.write(df["evidence"])