Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,225 +1,88 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import moviepy
|
4 |
-
import requests
|
5 |
-
import whisper
|
6 |
-
import gradio as gr
|
7 |
-
import pandas as pd
|
8 |
-
from duckduckgo_search import DDGS
|
9 |
from transformers import pipeline
|
|
|
10 |
from sklearn.metrics.pairwise import cosine_similarity
|
11 |
import numpy as np
|
12 |
-
|
|
|
13 |
|
14 |
-
# --- Constants ---
|
15 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
16 |
|
17 |
-
# --- Basic Agent Definition ---
|
18 |
class BasicAgent:
|
19 |
def __init__(self):
|
20 |
print("BasicAgent initialized.")
|
21 |
-
|
22 |
-
self.
|
23 |
-
self.
|
24 |
-
self.
|
25 |
-
self.
|
26 |
|
27 |
-
def
|
28 |
-
|
29 |
-
entities
|
30 |
-
return [e['word'] for e in entities if e['entity_group'] == 'PER']
|
31 |
|
32 |
-
def
|
33 |
-
|
34 |
-
for result in search_results:
|
35 |
-
if "Wikipedia:Featured_article_candidates" in result.get('href', ''):
|
36 |
-
try:
|
37 |
-
response = requests.get(result['href'], timeout=10)
|
38 |
-
soup = BeautifulSoup(response.text, 'html.parser')
|
39 |
-
text = soup.get_text()
|
40 |
-
for line in text.split("\n"):
|
41 |
-
if "nominated by" in line.lower():
|
42 |
-
persons = self.extract_person_entities(line)
|
43 |
-
return f"Nominated by {persons[0]}" if persons else line.strip()
|
44 |
-
except Exception:
|
45 |
-
continue
|
46 |
-
return None
|
47 |
|
48 |
-
def
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
best_answer = result['body']
|
59 |
-
return best_answer or "No high-confidence answer found."
|
60 |
|
61 |
def search(self, question: str) -> str:
|
62 |
try:
|
63 |
with DDGS() as ddgs:
|
64 |
-
results = list(ddgs.text(question, max_results=
|
65 |
if not results:
|
66 |
return "No relevant search results found."
|
67 |
-
|
68 |
-
|
69 |
-
if "featured article" in question.lower() and "wikipedia" in question.lower():
|
70 |
-
nomination_info = self.extract_wikipedia_nominator(results)
|
71 |
-
if nomination_info:
|
72 |
-
return nomination_info
|
73 |
-
|
74 |
-
# Otherwise, return the best search result based on semantic similarity
|
75 |
-
return self.score_search_results(question, results)
|
76 |
except Exception as e:
|
77 |
return f"Search error: {e}"
|
78 |
|
79 |
-
def
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
result = self.whisper_model.transcribe(audio_path)
|
85 |
-
return result["text"]
|
86 |
|
87 |
def __call__(self, question: str, video_path: str = None) -> str:
|
88 |
-
print(f"Agent received question
|
|
|
89 |
if video_path:
|
90 |
transcription = self.call_whisper(video_path)
|
91 |
-
print(f"Transcribed video
|
92 |
return transcription
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
return answer
|
98 |
-
|
99 |
|
100 |
-
#
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
and displays the results.
|
105 |
-
"""
|
106 |
-
# --- Determine HF Space Runtime URL and Repo URL ---
|
107 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
108 |
-
|
109 |
-
if profile:
|
110 |
-
username = f"{profile.username}"
|
111 |
-
print(f"User logged in: {username}")
|
112 |
-
else:
|
113 |
-
print("User not logged in.")
|
114 |
-
return "Please Login to Hugging Face with the button.", None
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
agent = BasicAgent()
|
123 |
-
except Exception as e:
|
124 |
-
print(f"Error instantiating agent: {e}")
|
125 |
-
return f"Error initializing agent: {e}", None
|
126 |
-
|
127 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
128 |
-
print(agent_code)
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
response = requests.get(questions_url, timeout=15)
|
134 |
-
response.raise_for_status()
|
135 |
-
questions_data = response.json()
|
136 |
-
if not questions_data:
|
137 |
-
print("Fetched questions list is empty.")
|
138 |
-
return "Fetched questions list is empty or invalid format.", None
|
139 |
-
print(f"Fetched {len(questions_data)} questions.")
|
140 |
-
except requests.exceptions.RequestException as e:
|
141 |
-
print(f"Error fetching questions: {e}")
|
142 |
-
return f"Error fetching questions: {e}", None
|
143 |
-
except requests.exceptions.JSONDecodeError as e:
|
144 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
145 |
-
return f"Error decoding server response for questions: {e}", None
|
146 |
-
except Exception as e:
|
147 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
148 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
answers_payload = []
|
153 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
154 |
-
for item in questions_data:
|
155 |
-
task_id = item.get("task_id")
|
156 |
-
question_text = item.get("question")
|
157 |
-
video_link = item.get("video_link") # Assuming the question contains an optional video link
|
158 |
|
159 |
-
if not task_id or question_text is None:
|
160 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
161 |
-
continue
|
162 |
-
|
163 |
-
try:
|
164 |
-
# Pass video_link if available, else just the question text
|
165 |
-
submitted_answer = agent(question_text, video_path=video_link)
|
166 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
167 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
168 |
-
except Exception as e:
|
169 |
-
print(f"Error running agent on task {task_id}: {e}")
|
170 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
171 |
-
|
172 |
-
if not answers_payload:
|
173 |
-
print("Agent did not produce any answers to submit.")
|
174 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
175 |
-
|
176 |
-
# 4. Prepare Submission
|
177 |
-
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
178 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
179 |
-
print(status_update)
|
180 |
-
|
181 |
-
# 5. Submit
|
182 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
183 |
-
try:
|
184 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
185 |
-
response.raise_for_status()
|
186 |
-
result_data = response.json()
|
187 |
-
final_status = (
|
188 |
-
f"Submission Successful!\n"
|
189 |
-
f"User: {result_data.get('username')}\n"
|
190 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
191 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
192 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
193 |
-
)
|
194 |
-
print("Submission successful.")
|
195 |
-
results_df = pd.DataFrame(results_log)
|
196 |
-
return final_status, results_df
|
197 |
-
except requests.exceptions.HTTPError as e:
|
198 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
199 |
-
try:
|
200 |
-
error_json = e.response.json()
|
201 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
202 |
-
except requests.exceptions.JSONDecodeError:
|
203 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
204 |
-
status_message = f"Submission Failed: {error_detail}"
|
205 |
-
print(status_message)
|
206 |
-
results_df = pd.DataFrame(results_log)
|
207 |
-
return status_message, results_df
|
208 |
-
except requests.exceptions.Timeout:
|
209 |
-
status_message = "Submission Failed: The request timed out."
|
210 |
-
print(status_message)
|
211 |
-
results_df = pd.DataFrame(results_log)
|
212 |
-
return status_message, results_df
|
213 |
-
except requests.exceptions.RequestException as e:
|
214 |
-
status_message = f"Submission Failed: Network error - {e}"
|
215 |
-
print(status_message)
|
216 |
-
results_df = pd.DataFrame(results_log)
|
217 |
-
return status_message, results_df
|
218 |
-
except Exception as e:
|
219 |
-
status_message = f"An unexpected error occurred during submission: {e}"
|
220 |
-
print(status_message)
|
221 |
-
results_df = pd.DataFrame(results_log)
|
222 |
-
return status_message, results_df
|
223 |
|
224 |
|
225 |
# --- Build Gradio Interface using Blocks ---
|
|
|
1 |
+
import re
|
2 |
+
import spacy
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from transformers import pipeline
|
4 |
+
from duckduckgo_search import DDGS
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
import numpy as np
|
7 |
+
import whisper
|
8 |
+
import moviepy.editor
|
9 |
|
|
|
|
|
10 |
|
|
|
11 |
class BasicAgent:
|
12 |
def __init__(self):
|
13 |
print("BasicAgent initialized.")
|
14 |
+
self.whisper_model = whisper.load_model("base")
|
15 |
+
self.qa_pipeline = pipeline("question-answering")
|
16 |
+
self.ner_pipeline = pipeline("ner", aggregation_strategy="simple")
|
17 |
+
self.embedding_model = pipeline("feature-extraction")
|
18 |
+
self.spacy = spacy.load("en_core_web_sm")
|
19 |
|
20 |
+
def extract_named_entities(self, text):
|
21 |
+
entities = self.ner_pipeline(text)
|
22 |
+
return [e["word"] for e in entities if e["entity_group"] == "PER"]
|
|
|
23 |
|
24 |
+
def extract_numbers(self, text):
|
25 |
+
return re.findall(r"\d+", text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
def extract_keywords(self, text):
|
28 |
+
doc = self.spacy(text)
|
29 |
+
return [token.text for token in doc if token.pos_ in ["NOUN", "PROPN"]]
|
30 |
+
|
31 |
+
def call_whisper(self, video_path: str) -> str:
|
32 |
+
video = moviepy.editor.VideoFileClip(video_path)
|
33 |
+
audio_path = "temp_audio.wav"
|
34 |
+
video.audio.write_audiofile(audio_path)
|
35 |
+
result = self.whisper_model.transcribe(audio_path)
|
36 |
+
return result["text"]
|
|
|
|
|
37 |
|
38 |
def search(self, question: str) -> str:
|
39 |
try:
|
40 |
with DDGS() as ddgs:
|
41 |
+
results = list(ddgs.text(question, max_results=3))
|
42 |
if not results:
|
43 |
return "No relevant search results found."
|
44 |
+
context = results[0]["body"]
|
45 |
+
return context
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
except Exception as e:
|
47 |
return f"Search error: {e}"
|
48 |
|
49 |
+
def answer_question(self, question: str, context: str) -> str:
|
50 |
+
try:
|
51 |
+
return self.qa_pipeline(question=question, context=context)["answer"]
|
52 |
+
except:
|
53 |
+
return context # Fallback to context if QA fails
|
|
|
|
|
54 |
|
55 |
def __call__(self, question: str, video_path: str = None) -> str:
|
56 |
+
print(f"Agent received question: {question[:60]}...")
|
57 |
+
|
58 |
if video_path:
|
59 |
transcription = self.call_whisper(video_path)
|
60 |
+
print(f"Transcribed video: {transcription[:100]}...")
|
61 |
return transcription
|
62 |
|
63 |
+
context = self.search(question)
|
64 |
+
answer = self.answer_question(question, context)
|
65 |
+
q_lower = question.lower()
|
|
|
|
|
66 |
|
67 |
+
# Enhance based on question type
|
68 |
+
if "who" in q_lower:
|
69 |
+
people = self.extract_named_entities(context)
|
70 |
+
return f"👤 Who: {', '.join(people) if people else 'No person found'}\n\n🧠 Answer: {answer}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
elif "how many" in q_lower:
|
73 |
+
numbers = self.extract_numbers(context)
|
74 |
+
return f"🔢 How many: {', '.join(numbers) if numbers else 'No numbers found'}\n\n🧠 Answer: {answer}"
|
75 |
|
76 |
+
elif "how" in q_lower:
|
77 |
+
return f"⚙️ How: {answer}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
elif "what" in q_lower or "where" in q_lower:
|
80 |
+
keywords = self.extract_keywords(context)
|
81 |
+
return f"🗝️ Keywords: {', '.join(keywords[:5])}\n\n🧠 Answer: {answer}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
else:
|
84 |
+
return f"🧠 Answer: {answer}"
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
|
88 |
# --- Build Gradio Interface using Blocks ---
|