Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ from duckduckgo_search import DDGS
|
|
9 |
from transformers import pipeline
|
10 |
from sklearn.metrics.pairwise import cosine_similarity
|
11 |
import numpy as np
|
12 |
-
import
|
13 |
|
14 |
# --- Constants ---
|
15 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
@@ -18,82 +18,86 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
18 |
class BasicAgent:
|
19 |
def __init__(self):
|
20 |
print("BasicAgent initialized.")
|
21 |
-
# Initialize
|
22 |
self.whisper_model = whisper.load_model("base") # You can change the model to `large`, `medium`, etc.
|
23 |
self.search_pipeline = pipeline("question-answering")
|
24 |
self.nlp_model = pipeline("feature-extraction") # For semantic similarity (using transformer model)
|
|
|
25 |
|
26 |
-
def
|
27 |
-
#
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
|
|
|
|
|
|
31 |
best_score = -1
|
32 |
best_answer = None
|
33 |
-
|
34 |
-
# Loop through search results and calculate similarity
|
35 |
for result in search_results:
|
36 |
-
result_embedding = self.nlp_model(result['body'])
|
37 |
-
|
38 |
-
|
39 |
-
# Calculate cosine similarity
|
40 |
-
similarity = cosine_similarity([question_embedding], [result_embedding])
|
41 |
-
|
42 |
-
# Check if this result is better
|
43 |
if similarity > best_score:
|
44 |
best_score = similarity
|
45 |
best_answer = result['body']
|
46 |
-
|
47 |
-
return best_answer
|
48 |
|
49 |
def search(self, question: str) -> str:
|
50 |
-
# Try Wikipedia first for reliable context
|
51 |
-
try:
|
52 |
-
wiki_titles = wikipedia.search(question)
|
53 |
-
if wiki_titles:
|
54 |
-
page = wikipedia.page(wiki_titles[0])
|
55 |
-
wiki_content = page.content[:4000] # Truncate to 4000 chars for the QA model
|
56 |
-
result = self.search_pipeline(question=question, context=wiki_content)
|
57 |
-
return result["answer"]
|
58 |
-
except Exception as e:
|
59 |
-
print(f"Wikipedia lookup failed: {e}")
|
60 |
try:
|
61 |
with DDGS() as ddgs:
|
62 |
-
results = list(ddgs.text(question, max_results=
|
63 |
-
if results:
|
64 |
-
# Score all the results and return the best one
|
65 |
-
return self.score_search_results(question, results)
|
66 |
-
else:
|
67 |
return "No relevant search results found."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
except Exception as e:
|
69 |
return f"Search error: {e}"
|
70 |
|
71 |
def call_whisper(self, video_path: str) -> str:
|
72 |
-
# Transcribe
|
73 |
video = moviepy.editor.VideoFileClip(video_path)
|
74 |
audio_path = "temp_audio.wav"
|
75 |
video.audio.write_audiofile(audio_path)
|
76 |
-
|
77 |
-
# Transcribe audio to text
|
78 |
result = self.whisper_model.transcribe(audio_path)
|
79 |
return result["text"]
|
80 |
|
81 |
def __call__(self, question: str, video_path: str = None) -> str:
|
82 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
83 |
-
|
84 |
-
# If a video path is provided, use Whisper to transcribe the video
|
85 |
if video_path:
|
86 |
transcription = self.call_whisper(video_path)
|
87 |
-
print(f"Transcribed video text: {transcription[:100]}...")
|
88 |
return transcription
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
print(f"Agent returning search result: {search_answer[:100]}...")
|
93 |
time.sleep(2)
|
94 |
-
return
|
95 |
|
96 |
|
|
|
97 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
98 |
"""
|
99 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
|
|
9 |
from transformers import pipeline
|
10 |
from sklearn.metrics.pairwise import cosine_similarity
|
11 |
import numpy as np
|
12 |
+
from bs4 import BeautifulSoup
|
13 |
|
14 |
# --- Constants ---
|
15 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
18 |
class BasicAgent:
|
19 |
def __init__(self):
|
20 |
print("BasicAgent initialized.")
|
21 |
+
# Initialize Whisper model for video transcription
|
22 |
self.whisper_model = whisper.load_model("base") # You can change the model to `large`, `medium`, etc.
|
23 |
self.search_pipeline = pipeline("question-answering")
|
24 |
self.nlp_model = pipeline("feature-extraction") # For semantic similarity (using transformer model)
|
25 |
+
self.ner_pipeline = pipeline("ner", grouped_entities=True)
|
26 |
|
27 |
+
def extract_person_entities(self, text: str) -> list:
|
28 |
+
# Extract named entities (persons) from the text
|
29 |
+
entities = self.ner_pipeline(text[:1000])
|
30 |
+
return [e['word'] for e in entities if e['entity_group'] == 'PER']
|
31 |
+
|
32 |
+
def extract_wikipedia_nominator(self, search_results: list) -> str:
|
33 |
+
# Check if search result contains Wikipedia nomination info
|
34 |
+
for result in search_results:
|
35 |
+
if "Wikipedia:Featured_article_candidates" in result.get('href', ''):
|
36 |
+
try:
|
37 |
+
response = requests.get(result['href'], timeout=10)
|
38 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
39 |
+
text = soup.get_text()
|
40 |
+
for line in text.split("\n"):
|
41 |
+
if "nominated by" in line.lower():
|
42 |
+
persons = self.extract_person_entities(line)
|
43 |
+
return f"Nominated by {persons[0]}" if persons else line.strip()
|
44 |
+
except Exception:
|
45 |
+
continue
|
46 |
+
return None
|
47 |
|
48 |
+
def score_search_results(self, question: str, search_results: list) -> str:
|
49 |
+
# Calculate semantic similarity and score the search results
|
50 |
+
question_embedding = np.mean(self.nlp_model(question)[0], axis=0)
|
51 |
best_score = -1
|
52 |
best_answer = None
|
|
|
|
|
53 |
for result in search_results:
|
54 |
+
result_embedding = np.mean(self.nlp_model(result['body'])[0], axis=0)
|
55 |
+
similarity = cosine_similarity([question_embedding], [result_embedding])[0][0]
|
|
|
|
|
|
|
|
|
|
|
56 |
if similarity > best_score:
|
57 |
best_score = similarity
|
58 |
best_answer = result['body']
|
59 |
+
return best_answer or "No high-confidence answer found."
|
|
|
60 |
|
61 |
def search(self, question: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
try:
|
63 |
with DDGS() as ddgs:
|
64 |
+
results = list(ddgs.text(question, max_results=5)) # Fetch top 5 results
|
65 |
+
if not results:
|
|
|
|
|
|
|
66 |
return "No relevant search results found."
|
67 |
+
|
68 |
+
# If the question relates to Wikipedia Featured Article nomination, check for nomination
|
69 |
+
if "featured article" in question.lower() and "wikipedia" in question.lower():
|
70 |
+
nomination_info = self.extract_wikipedia_nominator(results)
|
71 |
+
if nomination_info:
|
72 |
+
return nomination_info
|
73 |
+
|
74 |
+
# Otherwise, return the best search result based on semantic similarity
|
75 |
+
return self.score_search_results(question, results)
|
76 |
except Exception as e:
|
77 |
return f"Search error: {e}"
|
78 |
|
79 |
def call_whisper(self, video_path: str) -> str:
|
80 |
+
# Transcribe video using Whisper
|
81 |
video = moviepy.editor.VideoFileClip(video_path)
|
82 |
audio_path = "temp_audio.wav"
|
83 |
video.audio.write_audiofile(audio_path)
|
|
|
|
|
84 |
result = self.whisper_model.transcribe(audio_path)
|
85 |
return result["text"]
|
86 |
|
87 |
def __call__(self, question: str, video_path: str = None) -> str:
|
88 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
|
|
|
|
89 |
if video_path:
|
90 |
transcription = self.call_whisper(video_path)
|
91 |
+
print(f"Transcribed video text: {transcription[:100]}...")
|
92 |
return transcription
|
93 |
|
94 |
+
answer = self.search(question)
|
95 |
+
print(f"Agent returning search result: {answer[:100]}...")
|
|
|
96 |
time.sleep(2)
|
97 |
+
return answer
|
98 |
|
99 |
|
100 |
+
# --- Run and Submit All ---
|
101 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
102 |
"""
|
103 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|