Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import requests | |
import string | |
import warnings | |
import pandas as pd | |
import re | |
from huggingface_hub import login | |
from groq import Groq | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Basic Agent Definition --- | |
class BasicAgent: | |
def __init__(self): | |
print("BasicAgent initialized.") | |
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY", "")) | |
self.agent_prompt = ( | |
"""You are a general AI assistant. I will ask you a question. Report your thoughts, and | |
finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. | |
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated | |
list of numbers and/or strings. | |
If you are asked for a number, don't use comma to write your number neither use units such as $ | |
or percent sign unless specified otherwise. | |
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the | |
digits in plain text unless specified otherwise. | |
If you are asked for a comma separated list, apply the above rules depending of whether the element | |
to be put in the list is a number or a string.""" | |
) | |
def format_final_answer(self, answer: str) -> str: | |
cleaned = " ".join(answer.split()) | |
return f"FINAL ANSWER: {cleaned}" | |
def check_commutativity(self): | |
S = ['a', 'b', 'c', 'd', 'e'] | |
counter_example_elements = set() | |
index = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4} | |
self.operation_table = [ | |
['a', 'b', 'c', 'b', 'd'], | |
['b', 'c', 'a', 'e', 'c'], | |
['c', 'a', 'b', 'b', 'a'], | |
['b', 'e', 'b', 'e', 'd'], | |
['d', 'b', 'a', 'd', 'c'] | |
] | |
for x in S: | |
for y in S: | |
x_idx = index[x] | |
y_idx = index[y] | |
if self.operation_table[x_idx][y_idx] != self.operation_table[y_idx][x_idx]: | |
counter_example_elements.add(x) | |
counter_example_elements.add(y) | |
return self.format_final_answer(", ".join(sorted(counter_example_elements))) | |
def maybe_reversed(self, text: str) -> bool: | |
words = text.split() | |
reversed_ratio = sum( | |
1 for word in words if word[::-1].lower() in { | |
"if", "you", "understand", "this", "sentence", "write", | |
"opposite", "of", "the", "word", "left", "answer" | |
} | |
) / len(words) | |
return reversed_ratio > 0.3 | |
def solve_riddle(self, question: str) -> str: | |
question = question[::-1] | |
if "opposite of the word" in question: | |
match = re.search(r"opposite of the word ['\"](\w+)['\"]", question) | |
if match: | |
word = match.group(1).lower() | |
opposites = { | |
"left": "right", "up": "down", "hot": "cold", | |
"true": "false", "yes": "no", "black": "white" | |
} | |
opposite = opposites.get(word, f"UNKNOWN_OPPOSITE_OF_{word}") | |
return f"FINAL ANSWER: {opposite.upper()}" | |
return self.format_final_answer("COULD_NOT_SOLVE") | |
def query_groq(self, question: str) -> str: | |
full_prompt = f"{self.agent_prompt}\n\nQuestion: {question}" | |
try: | |
response = self.client.chat.completions.create( | |
model="llama3-8b-8192", | |
messages=[{"role": "user", "content": full_prompt}] | |
) | |
answer = response.choices[0].message.content | |
print(f"[Groq Raw Response]: {answer}") | |
if "FINAL ANSWER: " in answer: | |
return answer.split("FINAL ANSWER: ")[-1].strip().upper() | |
else: | |
return self.format_final_answer(answer).upper() | |
except Exception as e: | |
print(f"[Groq ERROR]: {e}") | |
return self.format_final_answer("GROQ_ERROR") | |
def __call__(self, question: str) -> str: | |
print(f"Received question: {question[:50]}...") | |
if "commutative" in question.lower(): | |
return self.check_commutativity() | |
if self.maybe_reversed(question): | |
print("Detected likely reversed riddle.") | |
return self.solve_riddle(question) | |
return self.query_groq(question) | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = f"{profile.username}" | |
print("User logged in.") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
return "Fetched questions list is empty or invalid format.", None | |
except requests.exceptions.RequestException as e: | |
return f"Error fetching questions: {e}", None | |
results_log = [] | |
answers_payload = [] | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
print(f"Q: {question_text}") | |
print(f"Predicted: {submitted_answer}") | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": submitted_answer | |
}) | |
except Exception as e: | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": f"AGENT ERROR: {e}" | |
}) | |
if not answers_payload: | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
submission_data = { | |
"username": username.strip(), | |
"agent_code": agent_code, | |
"answers": answers_payload | |
} | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
print(result_data) | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', '?')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
return final_status, pd.DataFrame(results_log) | |
except Exception as e: | |
return f"Submission Failed: {e}", pd.DataFrame(results_log) | |
# --- Build Gradio Interface --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", max_lines=5, interactive=False, max_length=200) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) | |