File size: 7,903 Bytes
72f623a
 
 
 
 
 
 
e197f92
72f623a
 
 
 
 
 
 
 
 
e197f92
72f623a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e197f92
72f623a
 
 
 
 
 
 
 
 
 
e197f92
72f623a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b759c7
 
db7f5d2
0b759c7
 
db7f5d2
 
 
 
 
 
 
 
 
 
 
 
0b759c7
db7f5d2
 
 
 
 
 
0b759c7
db7f5d2
 
 
 
 
 
 
 
e197f92
db7f5d2
 
de04564
1a7f3d1
e197f92
c323dcc
513d2f4
e197f92
513d2f4
 
 
e197f92
513d2f4
de04564
513d2f4
 
 
e197f92
513d2f4
f005c8e
db7f5d2
1dc8b46
513d2f4
0b759c7
 
 
 
 
db7f5d2
 
 
 
 
99eed40
db7f5d2
 
 
e197f92
db7f5d2
 
de04564
0b759c7
db7f5d2
0b759c7
72f623a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e197f92
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
import gradio as gr
import requests
import string
import warnings
import pandas as pd
import re
from huggingface_hub import login
from groq import Groq

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized.")
        self.client = Groq(api_key=os.environ.get("GROQ_API_KEY", ""))
        self.agent_prompt = (
            """You are a general AI assistant. I will ask you a question. Report your thoughts, and
            finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].
            YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated
            list of numbers and/or strings.
            If you are asked for a number, don't use comma to write your number neither use units such as $
            or percent sign unless specified otherwise.
            If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the
            digits in plain text unless specified otherwise.
            If you are asked for a comma separated list, apply the above rules depending of whether the element
            to be put in the list is a number or a string."""
        )

    def format_final_answer(self, answer: str) -> str:
        cleaned = " ".join(answer.split())
        return f"FINAL ANSWER: {cleaned}"

    def check_commutativity(self):
        S = ['a', 'b', 'c', 'd', 'e']
        counter_example_elements = set()
        index = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4}
        self.operation_table = [
            ['a', 'b', 'c', 'b', 'd'],
            ['b', 'c', 'a', 'e', 'c'],
            ['c', 'a', 'b', 'b', 'a'],
            ['b', 'e', 'b', 'e', 'd'],
            ['d', 'b', 'a', 'd', 'c']
        ]
        for x in S:
            for y in S:
                x_idx = index[x]
                y_idx = index[y]
                if self.operation_table[x_idx][y_idx] != self.operation_table[y_idx][x_idx]:
                    counter_example_elements.add(x)
                    counter_example_elements.add(y)
        return self.format_final_answer(", ".join(sorted(counter_example_elements)))

    def maybe_reversed(self, text: str) -> bool:
        words = text.split()
        reversed_ratio = sum(
            1 for word in words if word[::-1].lower() in {
                "if", "you", "understand", "this", "sentence", "write",
                "opposite", "of", "the", "word", "left", "answer"
            }
        ) / len(words)
        return reversed_ratio > 0.3

    def solve_riddle(self, question: str) -> str:
        question = question[::-1]
        if "opposite of the word" in question:
            match = re.search(r"opposite of the word ['\"](\w+)['\"]", question)
            if match:
                word = match.group(1).lower()
                opposites = {
                    "left": "right", "up": "down", "hot": "cold",
                    "true": "false", "yes": "no", "black": "white"
                }
                opposite = opposites.get(word, f"UNKNOWN_OPPOSITE_OF_{word}")
                return f"FINAL ANSWER: {opposite.upper()}"
        return self.format_final_answer("COULD_NOT_SOLVE")

    def query_groq(self, question: str) -> str:
        full_prompt = f"{self.agent_prompt}\n\nQuestion: {question}"
        try:
            response = self.client.chat.completions.create(
                model="llama3-8b-8192",
                messages=[{"role": "user", "content": full_prompt}]
            )
            answer = response.choices[0].message.content
            print(f"[Groq Raw Response]: {answer}")
            if "FINAL ANSWER: " in answer:
                return answer.split("FINAL ANSWER: ")[-1].strip().upper()
            else:
                return self.format_final_answer(answer).upper()
        except Exception as e:
            print(f"[Groq ERROR]: {e}")
            return self.format_final_answer("GROQ_ERROR")

    def __call__(self, question: str) -> str:
        print(f"Received question: {question[:50]}...")
        if "commutative" in question.lower():
            return self.check_commutativity()
        if self.maybe_reversed(question):
            print("Detected likely reversed riddle.")
            return self.solve_riddle(question)
        return self.query_groq(question)

def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")
    if profile:
        username = f"{profile.username}"
        print("User logged in.")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = BasicAgent()
    except Exception as e:
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "Fetched questions list is empty or invalid format.", None
    except requests.exceptions.RequestException as e:
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")

        if not task_id or question_text is None:
            continue
        try:
            submitted_answer = agent(question_text)
            print(f"Q: {question_text}")
            print(f"Predicted: {submitted_answer}")

            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": submitted_answer
            })
        except Exception as e:
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": f"AGENT ERROR: {e}"
            })

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }

    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        print(result_data)
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', '?')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        return final_status, pd.DataFrame(results_log)
    except Exception as e:
        return f"Submission Failed: {e}", pd.DataFrame(results_log)

# --- Build Gradio Interface ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", max_lines=5, interactive=False, max_length=200)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)