Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Basic Agent Logic --- | |
class BasicAgent: | |
def __init__(self): | |
print("BasicAgent initialized.") | |
self.llm = AutoModelForCausalLM.from_pretrained("gpt2") | |
self.tokenizer = AutoTokenizer.from_pretrained("gpt2") | |
self.agent_prompt = ( | |
"You are a general AI assistant. I will ask you a question. " | |
"Finish your answer with the format: FINAL ANSWER: [YOUR FINAL ANSWER]." | |
) | |
def __call__(self, question: str) -> str: | |
input_text = f"{self.agent_prompt}\n\nQuestion: {question}" | |
inputs = self.tokenizer(input_text, return_tensors="pt") | |
outputs = self.llm.generate(**inputs) | |
decoded = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
final = decoded.split("FINAL ANSWER:")[-1].strip() | |
return f"FINAL ANSWER: {final}" if final else "FINAL ANSWER: UNKNOWN" | |
# --- Submission Function --- | |
def run_and_submit_all(username): | |
space_id = os.getenv("SPACE_ID", "your-username/your-space") # fallback | |
if not username.strip(): | |
return "Username is required for submission.", None | |
agent = BasicAgent() | |
questions_url = f"{DEFAULT_API_URL}/questions" | |
submit_url = f"{DEFAULT_API_URL}/submit" | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
except Exception as e: | |
return f"Failed to fetch questions: {e}", None | |
answers = [] | |
log = [] | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question = item.get("question") | |
if not task_id or not question: | |
continue | |
try: | |
answer = agent(question) | |
answers.append({"task_id": task_id, "submitted_answer": answer}) | |
log.append({"Task ID": task_id, "Question": question, "Submitted Answer": answer}) | |
except Exception as e: | |
log.append({"Task ID": task_id, "Question": question, "Submitted Answer": f"ERROR: {e}"}) | |
if not answers: | |
return "No answers submitted.", pd.DataFrame(log) | |
payload = { | |
"username": username.strip(), | |
"agent_code": agent_code, | |
"answers": answers | |
} | |
try: | |
response = requests.post(submit_url, json=payload, timeout=30) | |
response.raise_for_status() | |
result = response.json() | |
status = ( | |
f"Submission Successful!\n" | |
f"User: {result.get('username')}\n" | |
f"Score: {result.get('score', 'N/A')}% " | |
f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')} correct)\n" | |
f"Message: {result.get('message', '')}" | |
) | |
return status, pd.DataFrame(log) | |
except Exception as e: | |
return f"Submission failed: {e}", pd.DataFrame(log) | |
# --- Gradio UI --- | |
with gr.Blocks() as demo: | |
gr.Markdown("## 🚀 Basic Agent Evaluation & Submission") | |
gr.Markdown("Enter your Hugging Face username and press **Run and Submit** to evaluate your agent and submit your results.") | |
username_input = gr.Textbox(label="Hugging Face Username", placeholder="e.g. your-hf-username") | |
run_button = gr.Button("Run and Submit") | |
status_output = gr.Textbox(label="Submission Status", lines=4, interactive=False) | |
results_table = gr.DataFrame(label="Submitted Answers") | |
run_button.click(fn=run_and_submit_all, inputs=[username_input], outputs=[status_output, results_table]) | |
if __name__ == "__main__": | |
demo.launch(debug=True) |