import os import gradio as gr import requests import pandas as pd from transformers import AutoModelForCausalLM, AutoTokenizer # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Basic Agent Logic --- class BasicAgent: def __init__(self): print("BasicAgent initialized.") self.llm = AutoModelForCausalLM.from_pretrained("gpt2") self.tokenizer = AutoTokenizer.from_pretrained("gpt2") self.agent_prompt = ( "You are a general AI assistant. I will ask you a question. " "Finish your answer with the format: FINAL ANSWER: [YOUR FINAL ANSWER]." ) def __call__(self, question: str) -> str: input_text = f"{self.agent_prompt}\n\nQuestion: {question}" inputs = self.tokenizer(input_text, return_tensors="pt") outputs = self.llm.generate(**inputs) decoded = self.tokenizer.decode(outputs[0], skip_special_tokens=True) final = decoded.split("FINAL ANSWER:")[-1].strip() return f"FINAL ANSWER: {final}" if final else "FINAL ANSWER: UNKNOWN" # --- Submission Function --- def run_and_submit_all(username): space_id = os.getenv("SPACE_ID", "your-username/your-space") # fallback if not username.strip(): return "Username is required for submission.", None agent = BasicAgent() questions_url = f"{DEFAULT_API_URL}/questions" submit_url = f"{DEFAULT_API_URL}/submit" agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() except Exception as e: return f"Failed to fetch questions: {e}", None answers = [] log = [] for item in questions_data: task_id = item.get("task_id") question = item.get("question") if not task_id or not question: continue try: answer = agent(question) answers.append({"task_id": task_id, "submitted_answer": answer}) log.append({"Task ID": task_id, "Question": question, "Submitted Answer": answer}) except Exception as e: log.append({"Task ID": task_id, "Question": question, "Submitted Answer": f"ERROR: {e}"}) if not answers: return "No answers submitted.", pd.DataFrame(log) payload = { "username": username.strip(), "agent_code": agent_code, "answers": answers } try: response = requests.post(submit_url, json=payload, timeout=30) response.raise_for_status() result = response.json() status = ( f"Submission Successful!\n" f"User: {result.get('username')}\n" f"Score: {result.get('score', 'N/A')}% " f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')} correct)\n" f"Message: {result.get('message', '')}" ) return status, pd.DataFrame(log) except Exception as e: return f"Submission failed: {e}", pd.DataFrame(log) # --- Gradio UI --- with gr.Blocks() as demo: gr.Markdown("## 🚀 Basic Agent Evaluation & Submission") gr.Markdown("Enter your Hugging Face username and press **Run and Submit** to evaluate your agent and submit your results.") username_input = gr.Textbox(label="Hugging Face Username", placeholder="e.g. your-hf-username") run_button = gr.Button("Run and Submit") status_output = gr.Textbox(label="Submission Status", lines=4, interactive=False) results_table = gr.DataFrame(label="Submitted Answers") run_button.click(fn=run_and_submit_all, inputs=[username_input], outputs=[status_output, results_table]) if __name__ == "__main__": demo.launch(debug=True)