File size: 10,993 Bytes
72f623a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b759c7
 
db7f5d2
0b759c7
 
db7f5d2
 
 
 
 
 
 
 
 
 
 
 
0b759c7
db7f5d2
513d2f4
db7f5d2
 
 
 
 
0b759c7
db7f5d2
 
 
 
 
513d2f4
 
 
db7f5d2
 
 
513d2f4
 
db7f5d2
 
513d2f4
de04564
1a7f3d1
513d2f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de04564
513d2f4
 
 
 
 
 
 
f005c8e
db7f5d2
1dc8b46
513d2f4
0b759c7
 
 
 
 
db7f5d2
 
 
 
 
99eed40
513d2f4
 
 
 
 
 
db7f5d2
 
 
513d2f4
db7f5d2
 
513d2f4
de04564
0b759c7
513d2f4
db7f5d2
0b759c7
72f623a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os
import gradio as gr
import requests
import string
import warnings
import pandas as pd
from huggingface_hub import login
import re
import json
from groq import Groq

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized.")
        self.client = Groq(api_key=os.environ["GROQ_API_KEY"])
        self.agent_prompt = (
            """You are a general AI assistant. I will ask you a question. Report your thoughts, and
            finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].
            YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated
            list of numbers and/or strings.
            If you are asked for a number, don't use comma to write your number neither use units such as $
            or percent sign unless specified otherwise.
            If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the
            digits in plain text unless specified otherwise.
            If you are asked for a comma separated list, apply the above rules depending of whether the element
            to be put in the list is a number or a string."""
        )

    def format_final_answer(self, answer: str) -> str:
        cleaned = " ".join(answer.split())
        return f"FINAL ANSWER: {cleaned}"

    def check_commutativity(self):
        S = ['a', 'b', 'c', 'd', 'e']
        counter_example_elements = set()
        index = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4}
        self.operation_table = [
            ['a', 'b', 'c', 'b', 'd'],
            ['b', 'c', 'a', 'e', 'c'],
            ['c', 'a', 'b', 'b', 'a'],
            ['b', 'e', 'b', 'e', 'd'],
            ['d', 'b', 'a', 'd', 'c']
        ]
        for x in S:
            for y in S:
                x_idx = index[x]
                y_idx = index[y]
                if self.operation_table[x_idx][y_idx] != self.operation_table[y_idx][x_idx]:
                    counter_example_elements.add(x)
                    counter_example_elements.add(y)
        return self.format_final_answer(", ".join(sorted(counter_example_elements)))

    def maybe_reversed(self, text: str) -> bool:
        words = text.split()
        reversed_ratio = sum(
            1 for word in words if word[::-1].lower() in {
                "if", "you", "understand", "this", "sentence", "write",
                "opposite", "of", "the", "word", "left", "answer"
            }
        ) / len(words)
        return reversed_ratio > 0.3

    def solve_riddle(self, question: str) -> str:
        question = question[::-1]
        if "opposite of the word" in question:
            match = re.search(r"opposite of the word ['\"](\w+)['\"]", question)
            if match:
                word = match.group(1).lower()
                opposites = {
                    "left": "right", "up": "down", "hot": "cold",
                    "true": "false", "yes": "no", "black": "white"
                }
                opposite = opposites.get(word, f"UNKNOWN_OPPOSITE_OF_{word}")
                return "FINAL ANSWER: RIGHT"
        return self.format_final_answer("COULD_NOT_SOLVE")

    def query_groq(self, question: str) -> str:
        full_prompt = f"{self.agent_prompt}\n\nQuestion: {question}"
        try:
            response = self.client.chat.completions.create(
                model="llama3-8b-8192",
                messages=[{"role": "user", "content": full_prompt}]
            )
            answer = response.choices[0].message.content
            if "FINAL ANSWER: " in answer:
                return answer.split("FINAL ANSWER: ")[-1].strip().upper()
            else:
                return self.format_final_answer(answer).upper()
        except Exception as e:
            print(f"[Groq ERROR]: {e}")
            return self.format_final_answer("GROQ_ERROR")

    def __call__(self, question: str) -> str:
        print(f"Received question: {question[:50]}...")
        if "commutative" in question.lower():
            return self.check_commutativity()
        if self.maybe_reversed(question):
            print("Detected likely reversed riddle.")
            return self.solve_riddle(question)
        return self.query_groq(question)

# --- Answer Scoring ---
def question_scorer(model_answer: str, ground_truth: str) -> bool:
    def normalize_str(input_str, remove_punct=True) -> str:
        no_spaces = re.sub(r"\s", "", input_str)
        if remove_punct:
            translator = str.maketrans("", "", string.punctuation)
            return no_spaces.lower().translate(translator)
        else:
            return no_spaces.lower()

    def normalize_number_str(number_str: str) -> float | None:
        for char in ["$", "%", ","]:
            number_str = number_str.replace(char, "")
        try:
            return float(number_str)
        except ValueError:
            print(f"String '{number_str}' cannot be normalized to number.")
            return None

    def split_string(s: str, char_list: list[str] = [",", ";"]) -> list[str]:
        pattern = f"[{''.join(map(re.escape, char_list))}]"
        return [elem.strip() for elem in re.split(pattern, s)]

    def is_float(val) -> bool:
        try:
            float(val)
            return True
        except ValueError:
            return False

    if model_answer is None:
        model_answer = "None"

    if is_float(ground_truth):
        print(f"Evaluating '{model_answer}' as a number.")
        normalized = normalize_number_str(model_answer)
        return normalized == float(ground_truth) if normalized is not None else False

    elif any(char in ground_truth for char in [",", ";"]):
        print(f"Evaluating '{model_answer}' as a comma/semicolon-separated list.")
        gt_elems = split_string(ground_truth)
        ma_elems = split_string(model_answer)

        if len(gt_elems) != len(ma_elems):
            warnings.warn("Answer lists have different lengths, returning False.", UserWarning)
            return False

        for ma_elem, gt_elem in zip(ma_elems, gt_elems):
            if is_float(gt_elem):
                normalized = normalize_number_str(ma_elem)
                if normalized != float(gt_elem):
                    return False
            else:
                if normalize_str(ma_elem, remove_punct=False) != normalize_str(gt_elem, remove_punct=False):
                    return False
        return True

    else:
        print(f"Evaluating '{model_answer}' as a string.")
        return normalize_str(model_answer) == normalize_str(ground_truth)

# --- Run and Submit All ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")
    if profile:
        username = f"{profile.username}"
        print("User logged in.")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = BasicAgent()
    except Exception as e:
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "Fetched questions list is empty or invalid format.", None
    except requests.exceptions.RequestException as e:
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []
    correct_count = 0
    total_with_gold = 0

    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        gold_answer = item.get("gold_answer")

        if not task_id or question_text is None:
            continue

        try:
            submitted_answer = agent(question_text)
            is_correct = question_scorer(submitted_answer, gold_answer) if gold_answer else None

            if is_correct is not None:
                total_with_gold += 1
                if is_correct:
                    correct_count += 1

            answers_payload.append({
                "task_id": task_id,
                "submitted_answer": submitted_answer
            })

            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": submitted_answer,
                "Gold Answer": gold_answer,
                "Correct?": "✅" if is_correct else "❌" if is_correct is not None else "N/A"
            })
        except Exception as e:
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": f"AGENT ERROR: {e}",
                "Gold Answer": gold_answer,
                "Correct?": "❌"
            })

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }

    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        print(result_data)

        accuracy_text = ""
        if total_with_gold > 0:
            accuracy = (correct_count / total_with_gold) * 100
            accuracy_text = f"\nLocal Accuracy: {accuracy:.2f}% ({correct_count}/{total_with_gold} correct)"

        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score (from server): {result_data.get('score', '?')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
            f"{accuracy_text}"
        )
        return final_status, pd.DataFrame(results_log)

    except Exception as e:
        return f"Submission Failed: {e}", pd.DataFrame(results_log)

# --- Build Gradio Interface ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", max_lines=5, interactive=False, max_length=200)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)