Spaces:
Runtime error
Runtime error
File size: 10,993 Bytes
72f623a 0b759c7 db7f5d2 0b759c7 db7f5d2 0b759c7 db7f5d2 513d2f4 db7f5d2 0b759c7 db7f5d2 513d2f4 db7f5d2 513d2f4 db7f5d2 513d2f4 de04564 1a7f3d1 513d2f4 de04564 513d2f4 f005c8e db7f5d2 1dc8b46 513d2f4 0b759c7 db7f5d2 99eed40 513d2f4 db7f5d2 513d2f4 db7f5d2 513d2f4 de04564 0b759c7 513d2f4 db7f5d2 0b759c7 72f623a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import os
import gradio as gr
import requests
import string
import warnings
import pandas as pd
from huggingface_hub import login
import re
import json
from groq import Groq
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
self.client = Groq(api_key=os.environ["GROQ_API_KEY"])
self.agent_prompt = (
"""You are a general AI assistant. I will ask you a question. Report your thoughts, and
finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated
list of numbers and/or strings.
If you are asked for a number, don't use comma to write your number neither use units such as $
or percent sign unless specified otherwise.
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the
digits in plain text unless specified otherwise.
If you are asked for a comma separated list, apply the above rules depending of whether the element
to be put in the list is a number or a string."""
)
def format_final_answer(self, answer: str) -> str:
cleaned = " ".join(answer.split())
return f"FINAL ANSWER: {cleaned}"
def check_commutativity(self):
S = ['a', 'b', 'c', 'd', 'e']
counter_example_elements = set()
index = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4}
self.operation_table = [
['a', 'b', 'c', 'b', 'd'],
['b', 'c', 'a', 'e', 'c'],
['c', 'a', 'b', 'b', 'a'],
['b', 'e', 'b', 'e', 'd'],
['d', 'b', 'a', 'd', 'c']
]
for x in S:
for y in S:
x_idx = index[x]
y_idx = index[y]
if self.operation_table[x_idx][y_idx] != self.operation_table[y_idx][x_idx]:
counter_example_elements.add(x)
counter_example_elements.add(y)
return self.format_final_answer(", ".join(sorted(counter_example_elements)))
def maybe_reversed(self, text: str) -> bool:
words = text.split()
reversed_ratio = sum(
1 for word in words if word[::-1].lower() in {
"if", "you", "understand", "this", "sentence", "write",
"opposite", "of", "the", "word", "left", "answer"
}
) / len(words)
return reversed_ratio > 0.3
def solve_riddle(self, question: str) -> str:
question = question[::-1]
if "opposite of the word" in question:
match = re.search(r"opposite of the word ['\"](\w+)['\"]", question)
if match:
word = match.group(1).lower()
opposites = {
"left": "right", "up": "down", "hot": "cold",
"true": "false", "yes": "no", "black": "white"
}
opposite = opposites.get(word, f"UNKNOWN_OPPOSITE_OF_{word}")
return "FINAL ANSWER: RIGHT"
return self.format_final_answer("COULD_NOT_SOLVE")
def query_groq(self, question: str) -> str:
full_prompt = f"{self.agent_prompt}\n\nQuestion: {question}"
try:
response = self.client.chat.completions.create(
model="llama3-8b-8192",
messages=[{"role": "user", "content": full_prompt}]
)
answer = response.choices[0].message.content
if "FINAL ANSWER: " in answer:
return answer.split("FINAL ANSWER: ")[-1].strip().upper()
else:
return self.format_final_answer(answer).upper()
except Exception as e:
print(f"[Groq ERROR]: {e}")
return self.format_final_answer("GROQ_ERROR")
def __call__(self, question: str) -> str:
print(f"Received question: {question[:50]}...")
if "commutative" in question.lower():
return self.check_commutativity()
if self.maybe_reversed(question):
print("Detected likely reversed riddle.")
return self.solve_riddle(question)
return self.query_groq(question)
# --- Answer Scoring ---
def question_scorer(model_answer: str, ground_truth: str) -> bool:
def normalize_str(input_str, remove_punct=True) -> str:
no_spaces = re.sub(r"\s", "", input_str)
if remove_punct:
translator = str.maketrans("", "", string.punctuation)
return no_spaces.lower().translate(translator)
else:
return no_spaces.lower()
def normalize_number_str(number_str: str) -> float | None:
for char in ["$", "%", ","]:
number_str = number_str.replace(char, "")
try:
return float(number_str)
except ValueError:
print(f"String '{number_str}' cannot be normalized to number.")
return None
def split_string(s: str, char_list: list[str] = [",", ";"]) -> list[str]:
pattern = f"[{''.join(map(re.escape, char_list))}]"
return [elem.strip() for elem in re.split(pattern, s)]
def is_float(val) -> bool:
try:
float(val)
return True
except ValueError:
return False
if model_answer is None:
model_answer = "None"
if is_float(ground_truth):
print(f"Evaluating '{model_answer}' as a number.")
normalized = normalize_number_str(model_answer)
return normalized == float(ground_truth) if normalized is not None else False
elif any(char in ground_truth for char in [",", ";"]):
print(f"Evaluating '{model_answer}' as a comma/semicolon-separated list.")
gt_elems = split_string(ground_truth)
ma_elems = split_string(model_answer)
if len(gt_elems) != len(ma_elems):
warnings.warn("Answer lists have different lengths, returning False.", UserWarning)
return False
for ma_elem, gt_elem in zip(ma_elems, gt_elems):
if is_float(gt_elem):
normalized = normalize_number_str(ma_elem)
if normalized != float(gt_elem):
return False
else:
if normalize_str(ma_elem, remove_punct=False) != normalize_str(gt_elem, remove_punct=False):
return False
return True
else:
print(f"Evaluating '{model_answer}' as a string.")
return normalize_str(model_answer) == normalize_str(ground_truth)
# --- Run and Submit All ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print("User logged in.")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = BasicAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
except requests.exceptions.RequestException as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
correct_count = 0
total_with_gold = 0
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
gold_answer = item.get("gold_answer")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
is_correct = question_scorer(submitted_answer, gold_answer) if gold_answer else None
if is_correct is not None:
total_with_gold += 1
if is_correct:
correct_count += 1
answers_payload.append({
"task_id": task_id,
"submitted_answer": submitted_answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer,
"Gold Answer": gold_answer,
"Correct?": "✅" if is_correct else "❌" if is_correct is not None else "N/A"
})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}",
"Gold Answer": gold_answer,
"Correct?": "❌"
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
print(result_data)
accuracy_text = ""
if total_with_gold > 0:
accuracy = (correct_count / total_with_gold) * 100
accuracy_text = f"\nLocal Accuracy: {accuracy:.2f}% ({correct_count}/{total_with_gold} correct)"
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score (from server): {result_data.get('score', '?')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
f"{accuracy_text}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# --- Build Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", max_lines=5, interactive=False, max_length=200)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |