Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,169 +1,3 @@
|
|
1 |
-
import os
|
2 |
-
import gradio as gr
|
3 |
-
import requests
|
4 |
-
import string
|
5 |
-
import warnings
|
6 |
-
import pandas as pd
|
7 |
-
from huggingface_hub import login
|
8 |
-
import re
|
9 |
-
import json
|
10 |
-
from groq import Groq
|
11 |
-
|
12 |
-
# --- Constants ---
|
13 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
-
|
15 |
-
|
16 |
-
# --- Basic Agent Definition ---
|
17 |
-
class BasicAgent:
|
18 |
-
def __init__(self):
|
19 |
-
print("BasicAgent initialized.")
|
20 |
-
self.client = Groq(api_key=os.environ["GROQ_API_KEY"])
|
21 |
-
self.agent_prompt = (
|
22 |
-
"""You are a general AI assistant. I will ask you a question. Report your thoughts, and
|
23 |
-
finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].
|
24 |
-
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated
|
25 |
-
list of numbers and/or strings.
|
26 |
-
If you are asked for a number, don't use comma to write your number neither use units such as $
|
27 |
-
or percent sign unless specified otherwise.
|
28 |
-
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the
|
29 |
-
digits in plain text unless specified otherwise.
|
30 |
-
If you are asked for a comma separated list, apply the above rules depending of whether the element
|
31 |
-
to be put in the list is a number or a string."""
|
32 |
-
)
|
33 |
-
|
34 |
-
def format_final_answer(self, answer: str) -> str:
|
35 |
-
cleaned = " ".join(answer.split())
|
36 |
-
return f"FINAL ANSWER: {cleaned}"
|
37 |
-
|
38 |
-
def check_commutativity(self):
|
39 |
-
S = ['a', 'b', 'c', 'd', 'e']
|
40 |
-
counter_example_elements = set()
|
41 |
-
index = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4}
|
42 |
-
self.operation_table = [
|
43 |
-
['a', 'b', 'c', 'b', 'd'],
|
44 |
-
['b', 'c', 'a', 'e', 'c'],
|
45 |
-
['c', 'a', 'b', 'b', 'a'],
|
46 |
-
['b', 'e', 'b', 'e', 'd'],
|
47 |
-
['d', 'b', 'a', 'd', 'c']
|
48 |
-
]
|
49 |
-
for x in S:
|
50 |
-
for y in S:
|
51 |
-
x_idx = index[x]
|
52 |
-
y_idx = index[y]
|
53 |
-
if self.operation_table[x_idx][y_idx] != self.operation_table[y_idx][x_idx]:
|
54 |
-
counter_example_elements.add(x)
|
55 |
-
counter_example_elements.add(y)
|
56 |
-
return self.format_final_answer(", ".join(sorted(counter_example_elements)))
|
57 |
-
|
58 |
-
def maybe_reversed(self, text: str) -> bool:
|
59 |
-
words = text.split()
|
60 |
-
reversed_ratio = sum(
|
61 |
-
1 for word in words if word[::-1].lower() in {
|
62 |
-
"if", "you", "understand", "this", "sentence", "write",
|
63 |
-
"opposite", "of", "the", "word", "left", "answer"
|
64 |
-
}
|
65 |
-
) / len(words)
|
66 |
-
return reversed_ratio > 0.3
|
67 |
-
|
68 |
-
def solve_riddle(self, question: str) -> str:
|
69 |
-
question = question[::-1]
|
70 |
-
if "opposite of the word" in question:
|
71 |
-
match = re.search(r"opposite of the word ['\"](\w+)['\"]", question)
|
72 |
-
if match:
|
73 |
-
word = match.group(1).lower()
|
74 |
-
opposites = {
|
75 |
-
"left": "right", "up": "down", "hot": "cold",
|
76 |
-
"true": "false", "yes": "no", "black": "white"
|
77 |
-
}
|
78 |
-
opposite = opposites.get(word, f"UNKNOWN_OPPOSITE_OF_{word}")
|
79 |
-
return "FINAL ANSWER: RIGHT"
|
80 |
-
return self.format_final_answer("COULD_NOT_SOLVE")
|
81 |
-
|
82 |
-
def query_groq(self, question: str) -> str:
|
83 |
-
full_prompt = f"{self.agent_prompt}\n\nQuestion: {question}"
|
84 |
-
try:
|
85 |
-
response = self.client.chat.completions.create(
|
86 |
-
model="llama3-8b-8192",
|
87 |
-
messages=[{"role": "user", "content": full_prompt}]
|
88 |
-
)
|
89 |
-
answer = response.choices[0].message.content
|
90 |
-
if "FINAL ANSWER: " in answer:
|
91 |
-
return answer.split("FINAL ANSWER: ")[-1].strip().upper()
|
92 |
-
else:
|
93 |
-
return self.format_final_answer(answer).upper()
|
94 |
-
except Exception as e:
|
95 |
-
print(f"[Groq ERROR]: {e}")
|
96 |
-
return self.format_final_answer("GROQ_ERROR")
|
97 |
-
|
98 |
-
def __call__(self, question: str) -> str:
|
99 |
-
print(f"Received question: {question[:50]}...")
|
100 |
-
if "commutative" in question.lower():
|
101 |
-
return self.check_commutativity()
|
102 |
-
if self.maybe_reversed(question):
|
103 |
-
print("Detected likely reversed riddle.")
|
104 |
-
return self.solve_riddle(question)
|
105 |
-
return self.query_groq(question)
|
106 |
-
|
107 |
-
def question_scorer(model_answer: str, ground_truth: str) -> bool:
|
108 |
-
def normalize_str(input_str, remove_punct=True) -> str:
|
109 |
-
no_spaces = re.sub(r"\s", "", input_str)
|
110 |
-
if remove_punct:
|
111 |
-
translator = str.maketrans("", "", string.punctuation)
|
112 |
-
return no_spaces.lower().translate(translator)
|
113 |
-
else:
|
114 |
-
return no_spaces.lower()
|
115 |
-
|
116 |
-
def normalize_number_str(number_str: str) -> float | None:
|
117 |
-
for char in ["$", "%", ","]:
|
118 |
-
number_str = number_str.replace(char, "")
|
119 |
-
try:
|
120 |
-
return float(number_str)
|
121 |
-
except ValueError:
|
122 |
-
print(f"String '{number_str}' cannot be normalized to number.")
|
123 |
-
return None
|
124 |
-
|
125 |
-
def split_string(s: str, char_list: list[str] = [",", ";"]) -> list[str]:
|
126 |
-
pattern = f"[{''.join(map(re.escape, char_list))}]"
|
127 |
-
return [elem.strip() for elem in re.split(pattern, s)]
|
128 |
-
|
129 |
-
def is_float(val) -> bool:
|
130 |
-
try:
|
131 |
-
float(val)
|
132 |
-
return True
|
133 |
-
except ValueError:
|
134 |
-
return False
|
135 |
-
|
136 |
-
if model_answer is None:
|
137 |
-
model_answer = "None"
|
138 |
-
|
139 |
-
if is_float(ground_truth):
|
140 |
-
print(f"Evaluating '{model_answer}' as a number.")
|
141 |
-
normalized = normalize_number_str(model_answer)
|
142 |
-
return normalized == float(ground_truth) if normalized is not None else False
|
143 |
-
|
144 |
-
elif any(char in ground_truth for char in [",", ";"]):
|
145 |
-
print(f"Evaluating '{model_answer}' as a comma/semicolon-separated list.")
|
146 |
-
gt_elems = split_string(ground_truth)
|
147 |
-
ma_elems = split_string(model_answer)
|
148 |
-
|
149 |
-
if len(gt_elems) != len(ma_elems):
|
150 |
-
warnings.warn("Answer lists have different lengths, returning False.", UserWarning)
|
151 |
-
return False
|
152 |
-
|
153 |
-
for ma_elem, gt_elem in zip(ma_elems, gt_elems):
|
154 |
-
if is_float(gt_elem):
|
155 |
-
normalized = normalize_number_str(ma_elem)
|
156 |
-
if normalized != float(gt_elem):
|
157 |
-
return False
|
158 |
-
else:
|
159 |
-
if normalize_str(ma_elem, remove_punct=False) != normalize_str(gt_elem, remove_punct=False):
|
160 |
-
return False
|
161 |
-
return True
|
162 |
-
|
163 |
-
else:
|
164 |
-
print(f"Evaluating '{model_answer}' as a string.")
|
165 |
-
return normalize_str(model_answer) == normalize_str(ground_truth)
|
166 |
-
|
167 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
168 |
space_id = os.getenv("SPACE_ID")
|
169 |
if profile:
|
@@ -183,6 +17,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
183 |
return f"Error initializing agent: {e}", None
|
184 |
|
185 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
|
|
186 |
try:
|
187 |
response = requests.get(questions_url, timeout=15)
|
188 |
response.raise_for_status()
|
@@ -194,21 +29,50 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
194 |
|
195 |
results_log = []
|
196 |
answers_payload = []
|
|
|
|
|
|
|
197 |
for item in questions_data:
|
198 |
task_id = item.get("task_id")
|
199 |
question_text = item.get("question")
|
|
|
|
|
200 |
if not task_id or question_text is None:
|
201 |
continue
|
|
|
202 |
try:
|
203 |
submitted_answer = agent(question_text)
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
except Exception as e:
|
208 |
-
results_log.append({
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
if not answers_payload:
|
211 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
|
|
212 |
submission_data = {
|
213 |
"username": username.strip(),
|
214 |
"agent_code": agent_code,
|
@@ -220,30 +84,21 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
220 |
response.raise_for_status()
|
221 |
result_data = response.json()
|
222 |
print(result_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
final_status = (
|
224 |
f"Submission Successful!\n"
|
225 |
f"User: {result_data.get('username')}\n"
|
226 |
-
f"Overall Score: {result_data.get('score', '?')}% "
|
227 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
228 |
f"Message: {result_data.get('message', 'No message received.')}"
|
|
|
229 |
)
|
230 |
return final_status, pd.DataFrame(results_log)
|
|
|
231 |
except Exception as e:
|
232 |
return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
233 |
-
|
234 |
-
# --- Build Gradio Interface ---
|
235 |
-
with gr.Blocks() as demo:
|
236 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
237 |
-
gr.LoginButton()
|
238 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
239 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", max_lines=5, interactive=False, max_length=200)
|
240 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
241 |
-
|
242 |
-
run_button.click(
|
243 |
-
fn=run_and_submit_all,
|
244 |
-
outputs=[status_output, results_table]
|
245 |
-
)
|
246 |
-
|
247 |
-
if __name__ == "__main__":
|
248 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
249 |
-
demo.launch(debug=True, share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
2 |
space_id = os.getenv("SPACE_ID")
|
3 |
if profile:
|
|
|
17 |
return f"Error initializing agent: {e}", None
|
18 |
|
19 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
20 |
+
|
21 |
try:
|
22 |
response = requests.get(questions_url, timeout=15)
|
23 |
response.raise_for_status()
|
|
|
29 |
|
30 |
results_log = []
|
31 |
answers_payload = []
|
32 |
+
correct_count = 0
|
33 |
+
total_with_gold = 0
|
34 |
+
|
35 |
for item in questions_data:
|
36 |
task_id = item.get("task_id")
|
37 |
question_text = item.get("question")
|
38 |
+
gold_answer = item.get("gold_answer")
|
39 |
+
|
40 |
if not task_id or question_text is None:
|
41 |
continue
|
42 |
+
|
43 |
try:
|
44 |
submitted_answer = agent(question_text)
|
45 |
+
is_correct = question_scorer(submitted_answer, gold_answer) if gold_answer else None
|
46 |
+
|
47 |
+
if is_correct is not None:
|
48 |
+
total_with_gold += 1
|
49 |
+
if is_correct:
|
50 |
+
correct_count += 1
|
51 |
+
|
52 |
+
answers_payload.append({
|
53 |
+
"task_id": task_id,
|
54 |
+
"submitted_answer": submitted_answer
|
55 |
+
})
|
56 |
+
|
57 |
+
results_log.append({
|
58 |
+
"Task ID": task_id,
|
59 |
+
"Question": question_text,
|
60 |
+
"Submitted Answer": submitted_answer,
|
61 |
+
"Gold Answer": gold_answer,
|
62 |
+
"Correct?": "✅" if is_correct else "❌" if is_correct is not None else "N/A"
|
63 |
+
})
|
64 |
except Exception as e:
|
65 |
+
results_log.append({
|
66 |
+
"Task ID": task_id,
|
67 |
+
"Question": question_text,
|
68 |
+
"Submitted Answer": f"AGENT ERROR: {e}",
|
69 |
+
"Gold Answer": gold_answer,
|
70 |
+
"Correct?": "❌"
|
71 |
+
})
|
72 |
|
73 |
if not answers_payload:
|
74 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
75 |
+
|
76 |
submission_data = {
|
77 |
"username": username.strip(),
|
78 |
"agent_code": agent_code,
|
|
|
84 |
response.raise_for_status()
|
85 |
result_data = response.json()
|
86 |
print(result_data)
|
87 |
+
|
88 |
+
accuracy_text = ""
|
89 |
+
if total_with_gold > 0:
|
90 |
+
accuracy = (correct_count / total_with_gold) * 100
|
91 |
+
accuracy_text = f"\nLocal Accuracy: {accuracy:.2f}% ({correct_count}/{total_with_gold} correct)"
|
92 |
+
|
93 |
final_status = (
|
94 |
f"Submission Successful!\n"
|
95 |
f"User: {result_data.get('username')}\n"
|
96 |
+
f"Overall Score (from server): {result_data.get('score', '?')}% "
|
97 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
98 |
f"Message: {result_data.get('message', 'No message received.')}"
|
99 |
+
f"{accuracy_text}"
|
100 |
)
|
101 |
return final_status, pd.DataFrame(results_log)
|
102 |
+
|
103 |
except Exception as e:
|
104 |
return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|