1-58-Bit_LLM / app.py
Tonic's picture
using docker initial commit
9fadf46 unverified
import gradio as gr
import subprocess
import os
import json
from huggingface_hub import hf_hub_download
import logging
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Paths
BITNET_BINARY = "/home/user/app/bitnet.cpp/build/bin/main"
MODEL_DIR = "/home/user/app/models"
MODEL_PATH = os.path.join(MODEL_DIR, "bitnet-b1.58-2B-4T.gguf")
MODEL_REPO = "microsoft/bitnet-b1.58-2B-4T-gguf"
MODEL_FILE = "bitnet-b1.58-2B-4T.gguf"
# Download model weights if not present
def download_model():
if not os.path.exists(MODEL_PATH):
logger.info("Downloading model weights...")
os.makedirs(MODEL_DIR, exist_ok=True)
hf_hub_download(
repo_id=MODEL_REPO,
filename=MODEL_FILE,
local_dir=MODEL_DIR,
local_dir_use_symlinks=False
)
logger.info("Model weights downloaded successfully.")
else:
logger.info("Model weights already exist.")
# Run model download on startup
download_model()
def run_bitnet_inference(prompt, max_tokens=50, temperature=0.7, top_p=0.9, top_k=50):
# Prepare the command to call bitnet.cpp binary
cmd = [
BITNET_BINARY,
"-m", MODEL_PATH,
"-p", prompt,
"--max-tokens", str(max_tokens),
"--temperature", str(temperature),
"--top-p", str(top_p),
"--top-k", str(top_k)
]
try:
# Run the command and capture output
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
output = result.stdout.strip()
return output
except subprocess.CalledProcessError as e:
logger.error(f"Inference error: {e.stderr}")
return f"Error during inference: {e.stderr}"
def manage_history(history):
# Limit to 3 turns (user + assistant = 2 messages per turn)
max_messages = 6
if len(history) > max_messages:
history = history[-max_messages:]
# Limit total character count to 300
total_chars = sum(len(msg["content"]) for msg in history)
while total_chars > 300 and history:
history.pop(0)
total_chars = sum(len(msg["content"]) for msg in dobrohistory)
return history
def generate_response(user_input, system_prompt, max_new_tokens, temperature, top_p, top_k, history):
# Format the prompt for bitnet.cpp
full_prompt = f"{system_prompt}\n\nUser: {user_input}\nAssistant: "
# Run inference
response = run_bitnet_inference(
full_prompt,
max_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k
)
# Update history
history.append({"role": "user", "content": user_input})
history.append({"role": "assistant", "content": response})
# Manage history limits
history = manage_history(history)
return history, history
# Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# BitNet b1.58 2B4T Demo")
with gr.Row():
with gr.Column():
gr.Markdown("""
## About BitNet b1.58 2B4T
BitNet b1.58 2B4T is the first open-source, native 1-bit Large Language Model with 2 billion parameters, developed by Microsoft Research. Trained on 4 trillion tokens, it matches the performance of full-precision models while offering significant efficiency gains in memory, energy, and latency. Features include:
- Transformer-based architecture with BitLinear layers
- Native 1.58-bit weights and 8-bit activations
- Maximum context length of 4096 tokens
- Optimized for efficient inference with bitnet.cpp
""")
with gr.Column():
gr.Markdown("""
## About Tonic AI
Tonic AI is a vibrant community of AI enthusiasts and developers always building cool demos and pushing the boundaries of what's possible with AI. We're passionate about creating innovative, accessible, and engaging AI experiences for everyone. Join us in exploring the future of AI!
""")
with gr.Row():
with gr.Column():
user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...")
system_prompt = gr.Textbox(
label="System Prompt",
value="You are a helpful AI assistant.",
placeholder="Enter system prompt..."
)
with gr.Accordion("Advanced Options", open=False):
max_new_tokens = gr.Slider(
minimum=10,
maximum=500,
value=50,
step=10,
label="Max New Tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="Top P"
)
top_k = gr.Slider(
minimum=1,
maximum=100,
value=50,
step=1,
label="Top K"
)
submit_btn = gr.Button("Send")
with gr.Column():
chatbot = gr.Chatbot(label="Conversation", type="messages")
chat_history = gr.State([])
submit_btn.click(
fn=generate_response,
inputs=[
user_input,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
chat_history
],
outputs=[chatbot, chat_history]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, ssr_mode=False, share=True)