File size: 6,008 Bytes
c84e5ec
9fadf46
 
 
 
 
4ce621a
9fadf46
 
 
c84e5ec
9fadf46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ce621a
9fadf46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c84e5ec
66a9100
9fadf46
 
66a9100
 
 
 
 
 
9fadf46
 
66a9100
 
 
c84e5ec
9fadf46
 
c84e5ec
9fadf46
 
 
 
c84e5ec
 
9fadf46
c84e5ec
 
 
 
 
66a9100
 
 
 
c84e5ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fadf46
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import gradio as gr
import subprocess
import os
import json
from huggingface_hub import hf_hub_download
import logging

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Paths
BITNET_BINARY = "/home/user/app/bitnet.cpp/build/bin/main"
MODEL_DIR = "/home/user/app/models"
MODEL_PATH = os.path.join(MODEL_DIR, "bitnet-b1.58-2B-4T.gguf")
MODEL_REPO = "microsoft/bitnet-b1.58-2B-4T-gguf"
MODEL_FILE = "bitnet-b1.58-2B-4T.gguf"

# Download model weights if not present
def download_model():
    if not os.path.exists(MODEL_PATH):
        logger.info("Downloading model weights...")
        os.makedirs(MODEL_DIR, exist_ok=True)
        hf_hub_download(
            repo_id=MODEL_REPO,
            filename=MODEL_FILE,
            local_dir=MODEL_DIR,
            local_dir_use_symlinks=False
        )
        logger.info("Model weights downloaded successfully.")
    else:
        logger.info("Model weights already exist.")

# Run model download on startup
download_model()

def run_bitnet_inference(prompt, max_tokens=50, temperature=0.7, top_p=0.9, top_k=50):
    # Prepare the command to call bitnet.cpp binary
    cmd = [
        BITNET_BINARY,
        "-m", MODEL_PATH,
        "-p", prompt,
        "--max-tokens", str(max_tokens),
        "--temperature", str(temperature),
        "--top-p", str(top_p),
        "--top-k", str(top_k)
    ]
    
    try:
        # Run the command and capture output
        result = subprocess.run(cmd, capture_output=True, text=True, check=True)
        output = result.stdout.strip()
        return output
    except subprocess.CalledProcessError as e:
        logger.error(f"Inference error: {e.stderr}")
        return f"Error during inference: {e.stderr}"

def manage_history(history):
    # Limit to 3 turns (user + assistant = 2 messages per turn)
    max_messages = 6
    if len(history) > max_messages:
        history = history[-max_messages:]
    
    # Limit total character count to 300
    total_chars = sum(len(msg["content"]) for msg in history)
    while total_chars > 300 and history:
        history.pop(0)
        total_chars = sum(len(msg["content"]) for msg in dobrohistory)
    
    return history

def generate_response(user_input, system_prompt, max_new_tokens, temperature, top_p, top_k, history):
    # Format the prompt for bitnet.cpp
    full_prompt = f"{system_prompt}\n\nUser: {user_input}\nAssistant: "
    
    # Run inference
    response = run_bitnet_inference(
        full_prompt,
        max_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k
    )
    
    # Update history
    history.append({"role": "user", "content": user_input})
    history.append({"role": "assistant", "content": response})
    
    # Manage history limits
    history = manage_history(history)
    
    return history, history

# Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# BitNet b1.58 2B4T Demo")
    
    with gr.Row():
        with gr.Column():
            gr.Markdown("""
            ## About BitNet b1.58 2B4T
            BitNet b1.58 2B4T is the first open-source, native 1-bit Large Language Model with 2 billion parameters, developed by Microsoft Research. Trained on 4 trillion tokens, it matches the performance of full-precision models while offering significant efficiency gains in memory, energy, and latency. Features include:
            - Transformer-based architecture with BitLinear layers
            - Native 1.58-bit weights and 8-bit activations
            - Maximum context length of 4096 tokens
            - Optimized for efficient inference with bitnet.cpp
            """)
        
        with gr.Column():
            gr.Markdown("""
            ## About Tonic AI
            Tonic AI is a vibrant community of AI enthusiasts and developers always building cool demos and pushing the boundaries of what's possible with AI. We're passionate about creating innovative, accessible, and engaging AI experiences for everyone. Join us in exploring the future of AI!
            """)
    
    with gr.Row():
        with gr.Column():
            user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...")
            system_prompt = gr.Textbox(
                label="System Prompt",
                value="You are a helpful AI assistant.",
                placeholder="Enter system prompt..."
            )
            
            with gr.Accordion("Advanced Options", open=False):
                max_new_tokens = gr.Slider(
                    minimum=10,
                    maximum=500,
                    value=50,
                    step=10,
                    label="Max New Tokens"
                )
                temperature = gr.Slider(
                    minimum=0.1,
                    maximum=2.0,
                    value=0.7,
                    step=0.1,
                    label="Temperature"
                )
                top_p = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.9,
                    step=0.05,
                    label="Top P"
                )
                top_k = gr.Slider(
                    minimum=1,
                    maximum=100,
                    value=50,
                    step=1,
                    label="Top K"
                )
            
            submit_btn = gr.Button("Send")
        
        with gr.Column():
            chatbot = gr.Chatbot(label="Conversation", type="messages")
    
    chat_history = gr.State([])
    
    submit_btn.click(
        fn=generate_response,
        inputs=[
            user_input,
            system_prompt,
            max_new_tokens,
            temperature,
            top_p,
            top_k,
            chat_history
        ],
        outputs=[chatbot, chat_history]
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, ssr_mode=False, share=True)