thery.ai / src /music /main.py
Testys's picture
Using a current method
5889992
from abc import ABC, abstractmethod
from spotipy import Spotify
from spotipy.oauth2 import SpotifyClientCredentials
from typing import Dict, List, Optional
import os
import logging
from dataclasses import dataclass
import json
from datetime import datetime
from dotenv import load_dotenv
load_dotenv()
# Configure logging
logger = logging.getLogger(__name__)
# -------------------------
# Data Structures
# -------------------------
@dataclass
class TrackRecommendation:
uri: str
name: str
artist: str
preview_url: Optional[str]
audio_features: Dict
@dataclass
class RecommendationParameters:
seed_genres: List[str]
target_features: Dict
limit: int = 20
market: str = "US"
# -------------------------
# Core Interfaces
# -------------------------
class IMusicRecommendationStrategy(ABC):
@abstractmethod
def generate_recommendations(self, emotion: str, context: Dict) -> List[TrackRecommendation]:
pass
class IAudioAnalyzer(ABC):
@abstractmethod
def analyze_track(self, track_uri: str) -> Dict:
pass
# -------------------------
# Spotify Client
# -------------------------
class SpotifyClient:
"""Handles Spotify authentication and basic API operations"""
def __init__(self):
self.client_credentials_manager = SpotifyClientCredentials(
client_id=os.getenv("SPOTIFY_CLIENT_ID"),
client_secret=os.getenv("SPOTIFY_CLIENT_SECRET")
)
self.client = Spotify(client_credentials_manager=self.client_credentials_manager)
def get_recommendations(self, params: RecommendationParameters) -> List[Dict]:
"""Base recommendation API call"""
try:
response = self.client.recommendations(
seed_genres=params.seed_genres,
target_features=params.target_features,
limit=params.limit,
market=params.market
)
return response['tracks']
except Exception as e:
logger.error(f"Recommendation failed: {str(e)}")
raise
# -------------------------
# Emotion Mapping System
# -------------------------
class EmotionAudioProfile:
"""Maps emotions to audio characteristics with cultural adaptation"""
def __init__(self):
self.base_profiles = {
"sad": {"target_valence": 0.2, "target_energy": 0.3},
"happy": {"target_valence": 0.8, "target_energy": 0.7},
"anxious": {"target_valence": 0.5, "target_energy": 0.4},
"angry": {"target_valence": 0.3, "target_energy": 0.8}
}
self.cultural_adjustments = {
"US": {"happy": {"target_danceability": 0.8}},
"JP": {"happy": {"target_danceability": 0.6}}
}
def get_profile(self, emotion: str, country: str = "US") -> Dict:
"""Get culturally adjusted audio profile"""
profile = self.base_profiles.get(emotion, {}).copy()
profile.update(self.cultural_adjustments.get(country, {}).get(emotion, {}))
return profile
class GenreMapper:
"""Hierarchical genre mapping system with fallbacks"""
def __init__(self, spotify_client: SpotifyClient):
self.spotify = spotify_client
self.genre_hierarchy = {
"sad": ["blues", "soul", "acoustic"],
"happy": ["pop", "dance", "disco"],
"anxious": ["ambient", "classical"],
"angry": ["rock", "metal"]
}
self.available_genres = self._load_available_genres()
def _load_available_genres(self) -> List[str]:
"""Get valid Spotify genres"""
return self.spotify.client.recommendation_genre_seeds()['genres']
def get_genres(self, emotion: str) -> List[str]:
"""Get best available genres for emotion"""
for genre in self.genre_hierarchy.get(emotion, []):
if genre in self.available_genres:
return [genre]
return ["pop"]
# -------------------------
# AI Integration
# -------------------------
class LLMEnhancer:
"""Enhances recommendations using LLM context analysis"""
def __init__(self):
from langchain_google_genai import ChatGoogleGenerativeAI
self.llm = ChatGoogleGenerativeAI(model="gemini-pro")
def enhance_params(self, context: Dict) -> Dict:
"""Analyze conversation context for musical attributes"""
prompt = f"""
Analyze this therapeutic context to suggest music parameters:
{json.dumps(context, indent=2)}
Return JSON with:
- target_energy (0-1)
- target_danceability (0-1)
- target_tempo
- seed_artist (main artist name)
- seed_track (main track name)
"""
try:
response = self.llm.invoke(prompt)
return json.loads(response.content)
except Exception as e:
logger.warning(f"LLM enhancement failed: {str(e)}")
return {}
# -------------------------
# Recommendation Engine
# -------------------------
class TherapeuticMusicRecommender(IMusicRecommendationStrategy):
"""Main recommendation engine with multiple strategies"""
def __init__(self):
self.spotify = SpotifyClient()
self.audio_profiler = EmotionAudioProfile()
self.genre_mapper = GenreMapper(self.spotify)
self.llm_enhancer = LLMEnhancer()
self.cache = RecommendationCache()
def generate_recommendations(self, emotion: str, context: Dict) -> List[TrackRecommendation]:
"""Generate context-aware recommendations"""
# Check cache first
cache_key = self._generate_cache_key(emotion, context)
if cached := self.cache.get(cache_key):
return cached
# Build parameters
params = self._build_recommendation_params(emotion, context)
# Get raw recommendations
raw_tracks = self.spotify.get_recommendations(params)
# Process and enrich tracks
processed = self._process_tracks(raw_tracks)
# Cache results
self.cache.store(cache_key, processed)
return processed
def _build_recommendation_params(self, emotion: str, context: Dict) -> RecommendationParameters:
"""Construct recommendation parameters"""
base_features = self.audio_profiler.get_profile(
emotion,
context.get('user', {}).get('country', 'US')
)
llm_features = self.llm_enhancer.enhance_params(context)
return RecommendationParameters(
seed_genres=self.genre_mapper.get_genres(emotion),
target_features={**base_features, **llm_features},
market=context.get('user', {}).get('country', 'US'),
limit=context.get('limit', 20)
)
def _process_tracks(self, raw_tracks: List[Dict]) -> List[TrackRecommendation]:
"""Convert raw tracks to enriched recommendations"""
return [
TrackRecommendation(
uri=track['uri'],
name=track['name'],
artist=track['artists'][0]['name'],
preview_url=track.get('preview_url'),
audio_features=self.spotify.client.audio_features(track['uri'])[0]
) for track in raw_tracks
]
def _generate_cache_key(self, emotion: str, context: Dict) -> str:
"""Generate unique cache key"""
return f"{emotion}-{context.get('user', {}).get('id', 'anonymous')}"
# -------------------------
# Advanced Features
# -------------------------
class RecommendationCache:
"""LRU cache for recommendations"""
def __init__(self, max_size: int = 100):
self.cache = {}
self.max_size = max_size
self.order = []
def get(self, key: str) -> Optional[List[TrackRecommendation]]:
if key in self.cache:
self.order.remove(key)
self.order.append(key)
return self.cache[key]
return None
def store(self, key: str, recommendations: List[TrackRecommendation]):
if len(self.cache) >= self.max_size:
oldest = self.order.pop(0)
del self.cache[oldest]
self.cache[key] = recommendations
self.order.append(key)
class MoodTransitionEngine:
"""Creates playlists that transition between emotional states"""
def __init__(self, recommender: TherapeuticMusicRecommender):
self.recommender = recommender
def create_transition_playlist(self, start_emotion: str, end_emotion: str, context: Dict) -> List[TrackRecommendation]:
"""Generate mood transition sequence"""
steps = self._calculate_transition_steps(start_emotion, end_emotion)
playlist = []
for step in steps:
context['transition_step'] = step
playlist += self.recommender.generate_recommendations(
emotion=step['emotion'],
context=context
)
return playlist
def _calculate_transition_steps(self, start: str, end: str) -> List[Dict]:
"""Determine intermediate emotional states"""
transitions = {
('sad', 'happy'): [{'emotion': 'sad', 'intensity': 0.8},
{'emotion': 'neutral', 'intensity': 0.5},
{'emotion': 'happy', 'intensity': 0.7}],
# Add other transition paths
}
return transitions.get((start, end), [])
# -------------------------
# Usage Example
# -------------------------
if __name__ == "__main__":
# Initialize system
recommender = TherapeuticMusicRecommender()
# Sample context from therapy session
context = {
"user": {
"id": "user123",
"country": "US",
"time_of_day": datetime.now().hour
},
"conversation": {
"emotion": "anxious",
"key_phrases": ["work stress", "sleep issues"],
"therapist_notes": "Needs calming music with nature sounds"
}
}
# Generate recommendations
recommendations = recommender.generate_recommendations(
emotion="anxious",
context=context
)
# Output results
print(f"Generated {len(recommendations)} tracks:")
for track in recommendations[:3]:
print(f"- {track.artist}: {track.name} ({track.audio_features['tempo']} BPM)")