File size: 10,485 Bytes
5889992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
from abc import ABC, abstractmethod
from spotipy import Spotify
from spotipy.oauth2 import SpotifyClientCredentials
from typing import Dict, List, Optional
import os
import logging
from dataclasses import dataclass
import json
from datetime import datetime
from dotenv import load_dotenv

load_dotenv()

# Configure logging
logger = logging.getLogger(__name__)

# -------------------------
# Data Structures
# -------------------------

@dataclass
class TrackRecommendation:
    uri: str
    name: str
    artist: str
    preview_url: Optional[str]
    audio_features: Dict

@dataclass
class RecommendationParameters:
    seed_genres: List[str]
    target_features: Dict
    limit: int = 20
    market: str = "US"

# -------------------------
# Core Interfaces
# -------------------------

class IMusicRecommendationStrategy(ABC):
    @abstractmethod
    def generate_recommendations(self, emotion: str, context: Dict) -> List[TrackRecommendation]:
        pass

class IAudioAnalyzer(ABC):
    @abstractmethod
    def analyze_track(self, track_uri: str) -> Dict:
        pass

# -------------------------
# Spotify Client
# -------------------------

class SpotifyClient:
    """Handles Spotify authentication and basic API operations"""
    
    def __init__(self):
        self.client_credentials_manager = SpotifyClientCredentials(
            client_id=os.getenv("SPOTIFY_CLIENT_ID"),
            client_secret=os.getenv("SPOTIFY_CLIENT_SECRET")
        )
        self.client = Spotify(client_credentials_manager=self.client_credentials_manager)
    
    def get_recommendations(self, params: RecommendationParameters) -> List[Dict]:
        """Base recommendation API call"""
        try:
            response = self.client.recommendations(
                seed_genres=params.seed_genres,
                target_features=params.target_features,
                limit=params.limit,
                market=params.market
            )
            return response['tracks']
        except Exception as e:
            logger.error(f"Recommendation failed: {str(e)}")
            raise

# -------------------------
# Emotion Mapping System
# -------------------------

class EmotionAudioProfile:
    """Maps emotions to audio characteristics with cultural adaptation"""
    
    def __init__(self):
        self.base_profiles = {
            "sad": {"target_valence": 0.2, "target_energy": 0.3},
            "happy": {"target_valence": 0.8, "target_energy": 0.7},
            "anxious": {"target_valence": 0.5, "target_energy": 0.4},
            "angry": {"target_valence": 0.3, "target_energy": 0.8}
        }
        
        self.cultural_adjustments = {
            "US": {"happy": {"target_danceability": 0.8}},
            "JP": {"happy": {"target_danceability": 0.6}}
        }

    def get_profile(self, emotion: str, country: str = "US") -> Dict:
        """Get culturally adjusted audio profile"""
        profile = self.base_profiles.get(emotion, {}).copy()
        profile.update(self.cultural_adjustments.get(country, {}).get(emotion, {}))
        return profile


class GenreMapper:
    """Hierarchical genre mapping system with fallbacks"""
    
    def __init__(self, spotify_client: SpotifyClient):
        self.spotify = spotify_client
        self.genre_hierarchy = {
            "sad": ["blues", "soul", "acoustic"],
            "happy": ["pop", "dance", "disco"],
            "anxious": ["ambient", "classical"],
            "angry": ["rock", "metal"]
        }
        self.available_genres = self._load_available_genres()

    def _load_available_genres(self) -> List[str]:
        """Get valid Spotify genres"""
        return self.spotify.client.recommendation_genre_seeds()['genres']

    def get_genres(self, emotion: str) -> List[str]:
        """Get best available genres for emotion"""
        for genre in self.genre_hierarchy.get(emotion, []):
            if genre in self.available_genres:
                return [genre]
        return ["pop"]

# -------------------------
# AI Integration
# -------------------------

class LLMEnhancer:
    """Enhances recommendations using LLM context analysis"""
    
    def __init__(self):
        from langchain_google_genai import ChatGoogleGenerativeAI
        self.llm = ChatGoogleGenerativeAI(model="gemini-pro")

    def enhance_params(self, context: Dict) -> Dict:
        """Analyze conversation context for musical attributes"""
        prompt = f"""
        Analyze this therapeutic context to suggest music parameters:
        {json.dumps(context, indent=2)}
        
        Return JSON with:
        - target_energy (0-1)
        - target_danceability (0-1)
        - target_tempo 
        - seed_artist (main artist name)
        - seed_track (main track name)
        """
        
        try:
            response = self.llm.invoke(prompt)
            return json.loads(response.content)
        except Exception as e:
            logger.warning(f"LLM enhancement failed: {str(e)}")
            return {}

# -------------------------
# Recommendation Engine
# -------------------------

class TherapeuticMusicRecommender(IMusicRecommendationStrategy):
    """Main recommendation engine with multiple strategies"""
    
    def __init__(self):
        self.spotify = SpotifyClient()
        self.audio_profiler = EmotionAudioProfile()
        self.genre_mapper = GenreMapper(self.spotify)
        self.llm_enhancer = LLMEnhancer()
        self.cache = RecommendationCache()

    def generate_recommendations(self, emotion: str, context: Dict) -> List[TrackRecommendation]:
        """Generate context-aware recommendations"""
        # Check cache first
        cache_key = self._generate_cache_key(emotion, context)
        if cached := self.cache.get(cache_key):
            return cached

        # Build parameters
        params = self._build_recommendation_params(emotion, context)
        
        # Get raw recommendations
        raw_tracks = self.spotify.get_recommendations(params)
        
        # Process and enrich tracks
        processed = self._process_tracks(raw_tracks)
        
        # Cache results
        self.cache.store(cache_key, processed)
        
        return processed

    def _build_recommendation_params(self, emotion: str, context: Dict) -> RecommendationParameters:
        """Construct recommendation parameters"""
        base_features = self.audio_profiler.get_profile(
            emotion, 
            context.get('user', {}).get('country', 'US')
        )
        
        llm_features = self.llm_enhancer.enhance_params(context)
        
        return RecommendationParameters(
            seed_genres=self.genre_mapper.get_genres(emotion),
            target_features={**base_features, **llm_features},
            market=context.get('user', {}).get('country', 'US'),
            limit=context.get('limit', 20)
        )

    def _process_tracks(self, raw_tracks: List[Dict]) -> List[TrackRecommendation]:
        """Convert raw tracks to enriched recommendations"""
        return [
            TrackRecommendation(
                uri=track['uri'],
                name=track['name'],
                artist=track['artists'][0]['name'],
                preview_url=track.get('preview_url'),
                audio_features=self.spotify.client.audio_features(track['uri'])[0]
            ) for track in raw_tracks
        ]

    def _generate_cache_key(self, emotion: str, context: Dict) -> str:
        """Generate unique cache key"""
        return f"{emotion}-{context.get('user', {}).get('id', 'anonymous')}"

# -------------------------
# Advanced Features
# -------------------------

class RecommendationCache:
    """LRU cache for recommendations"""
    
    def __init__(self, max_size: int = 100):
        self.cache = {}
        self.max_size = max_size
        self.order = []

    def get(self, key: str) -> Optional[List[TrackRecommendation]]:
        if key in self.cache:
            self.order.remove(key)
            self.order.append(key)
            return self.cache[key]
        return None

    def store(self, key: str, recommendations: List[TrackRecommendation]):
        if len(self.cache) >= self.max_size:
            oldest = self.order.pop(0)
            del self.cache[oldest]
        self.cache[key] = recommendations
        self.order.append(key)

class MoodTransitionEngine:
    """Creates playlists that transition between emotional states"""
    
    def __init__(self, recommender: TherapeuticMusicRecommender):
        self.recommender = recommender
        
    def create_transition_playlist(self, start_emotion: str, end_emotion: str, context: Dict) -> List[TrackRecommendation]:
        """Generate mood transition sequence"""
        steps = self._calculate_transition_steps(start_emotion, end_emotion)
        playlist = []
        
        for step in steps:
            context['transition_step'] = step
            playlist += self.recommender.generate_recommendations(
                emotion=step['emotion'],
                context=context
            )
            
        return playlist

    def _calculate_transition_steps(self, start: str, end: str) -> List[Dict]:
        """Determine intermediate emotional states"""
        transitions = {
            ('sad', 'happy'): [{'emotion': 'sad', 'intensity': 0.8}, 
                              {'emotion': 'neutral', 'intensity': 0.5},
                              {'emotion': 'happy', 'intensity': 0.7}],
            # Add other transition paths
        }
        return transitions.get((start, end), [])

# -------------------------
# Usage Example
# -------------------------

if __name__ == "__main__":
    # Initialize system
    recommender = TherapeuticMusicRecommender()
    
    # Sample context from therapy session
    context = {
        "user": {
            "id": "user123",
            "country": "US",
            "time_of_day": datetime.now().hour
        },
        "conversation": {
            "emotion": "anxious",
            "key_phrases": ["work stress", "sleep issues"],
            "therapist_notes": "Needs calming music with nature sounds"
        }
    }
    
    # Generate recommendations
    recommendations = recommender.generate_recommendations(
        emotion="anxious",
        context=context
    )
    
    # Output results
    print(f"Generated {len(recommendations)} tracks:")
    for track in recommendations[:3]:
        print(f"- {track.artist}: {track.name} ({track.audio_features['tempo']} BPM)")