|
import gradio as gr |
|
import cv2 |
|
import matplotlib |
|
import numpy as np |
|
import os |
|
from PIL import Image |
|
import spaces |
|
import torch |
|
import tempfile |
|
from gradio_imageslider import ImageSlider |
|
from huggingface_hub import hf_hub_download |
|
|
|
from models.PDFNet import build_model |
|
import torch |
|
import cv2 |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from tqdm import tqdm |
|
import argparse |
|
from args import get_args_parser |
|
from torchvision.transforms.functional import normalize |
|
import huggingface_hub |
|
|
|
from DAM_V2.depth_anything_v2.dpt import DepthAnythingV2 |
|
|
|
css = """ |
|
#img-display-container { |
|
max-height: 100vh; |
|
} |
|
#img-display-input { |
|
max-height: 80vh; |
|
} |
|
#img-display-output { |
|
max-height: 80vh; |
|
} |
|
#download { |
|
height: 62px; |
|
} |
|
""" |
|
|
|
|
|
device = torch.device('cpu') |
|
|
|
parser = argparse.ArgumentParser('PDFNet Testing script', parents=[get_args_parser()]) |
|
args = parser.parse_args(args=[]) |
|
model,model_name = build_model(args) |
|
model_path = hf_hub_download(repo_id="Tennineee/PDFNet-general",filename="PDF-Generally.pth", repo_type="model") |
|
model.load_state_dict(torch.load(model_path,map_location='cpu'),strict=False) |
|
model = model.to(device).eval() |
|
|
|
DAMV2_configs = { |
|
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, |
|
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, |
|
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, |
|
} |
|
encoder = 'vitb' |
|
encoder2name = { |
|
'vits': 'Small', |
|
'vitb': 'Base', |
|
'vitl': 'Large', |
|
'vitg': 'Giant', |
|
} |
|
model_name = encoder2name[encoder] |
|
DAMV2 = DepthAnythingV2(**DAMV2_configs[encoder]) |
|
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model") |
|
state_dict = torch.load(filepath, map_location="cpu") |
|
DAMV2.load_state_dict(state_dict) |
|
DAMV2 = DAMV2.to(device).eval() |
|
|
|
title = "# PDFNet" |
|
description = """Official demo for **PDFNet**-general, train on DIS-5K, HRSOD-TR, UHRSD-TR and UHRSD-TE. And here uses DAMV2-base to generate depth map. |
|
Please refer to our [paper](https://arxiv.org/abs/2503.06100) and [github](https://github.com/Tennine2077/PDFNet) for more details.""" |
|
|
|
class GOSNormalize(object): |
|
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): |
|
self.mean = mean |
|
self.std = std |
|
|
|
def __call__(self,image): |
|
image = normalize(image,self.mean,self.std) |
|
return image |
|
|
|
transforms = GOSNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|
|
|
def predict(image): |
|
H,W = image.shape[:2] |
|
depth = DAMV2.infer_image(image) |
|
image = torch.nn.functional.interpolate(torch.from_numpy(image).permute(2,0,1)[None,...],size=[1024,1024],mode='bilinear',align_corners=True)[0] |
|
depth = torch.nn.functional.interpolate(torch.from_numpy(depth)[None,None,...],size=[1024,1024],mode='bilinear',align_corners=True) |
|
image = torch.divide(image,255.0) |
|
depth = torch.divide(depth,255.0) |
|
image = transforms(image).unsqueeze(0) |
|
DIS_map = model.inference(image.to(device),depth.to(device))[0][0][0].cpu() |
|
DIS_map = cv2.resize(np.array(DIS_map), (W,H)) |
|
return DIS_map |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown(title) |
|
gr.Markdown(description) |
|
gr.Markdown("### Dichotomous Image Segmentation demo") |
|
|
|
with gr.Row(): |
|
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input') |
|
dis_image = gr.Image(label="Pedict View",type='numpy', elem_id='img-display-output') |
|
|
|
submit = gr.Button(value="Compute") |
|
|
|
def on_submit(image): |
|
original_image = image.copy() |
|
|
|
DIS_map = predict(np.array(image)) |
|
DIS_map = (DIS_map - DIS_map.min()) / (DIS_map.max() - DIS_map.min()) * 255.0 |
|
|
|
alpha_img = np.concatenate([np.array(original_image),DIS_map[...,None]],axis=-1).astype(np.uint16) |
|
return alpha_img |
|
|
|
submit.click(on_submit, inputs=[input_image], outputs=dis_image) |
|
|
|
example_files = os.listdir('assets/examples') |
|
example_files.sort() |
|
example_files = [os.path.join('assets/examples', filename) for filename in example_files] |
|
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=dis_image, fn=on_submit) |
|
|
|
if __name__ == '__main__': |
|
demo.queue().launch(share=True) |
|
|
|
|