File size: 4,693 Bytes
2581217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5688e09
2581217
5688e09
2581217
 
 
 
3b2067a
c7202d2
2581217
 
 
 
 
 
 
4348c66
e4cb17f
 
 
 
 
 
 
2581217
 
 
 
 
 
 
68b8ca8
2581217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
520b0be
 
 
 
2581217
 
 
 
 
 
 
 
 
 
 
 
8f890cd
 
2581217
 
 
 
 
fe1ae81
2581217
8f890cd
 
 
2581217
8f890cd
2581217
5bb0dcf
 
 
8f890cd
2581217
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import gradio as gr
import cv2
import matplotlib
import numpy as np
import os
from PIL import Image
import spaces
import torch
import tempfile
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download

from models.PDFNet import build_model
import torch
import cv2
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
import argparse
from args import get_args_parser
from torchvision.transforms.functional import normalize
import huggingface_hub

from DAM_V2.depth_anything_v2.dpt import DepthAnythingV2

css = """
#img-display-container {
    max-height: 100vh;
}
#img-display-input {
    max-height: 80vh;
}
#img-display-output {
    max-height: 80vh;
}
#download {
    height: 62px;
}
"""
# device = 'cuda' if torch.cuda.is_available() else 'cpu'

device = torch.device('cpu')

parser = argparse.ArgumentParser('PDFNet Testing script', parents=[get_args_parser()])
args = parser.parse_args(args=[])
model,model_name = build_model(args)
model_path = hf_hub_download(repo_id="Tennineee/PDFNet-general",filename="PDF-Generally.pth", repo_type="model")
model.load_state_dict(torch.load(model_path,map_location='cpu'),strict=False)
model = model.to(device).eval()

DAMV2_configs = {
   'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
    'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
}
encoder = 'vitb' # or 'vits', 'vitb', 'vitl'
encoder2name = {
    'vits': 'Small',
    'vitb': 'Base',
    'vitl': 'Large',
    'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
}
model_name = encoder2name[encoder]
DAMV2 = DepthAnythingV2(**DAMV2_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
state_dict = torch.load(filepath, map_location="cpu")
DAMV2.load_state_dict(state_dict)
DAMV2 = DAMV2.to(device).eval()

title = "# PDFNet"
description = """Official demo for **PDFNet**-general, train on DIS-5K, HRSOD-TR, UHRSD-TR and UHRSD-TE. And here uses DAMV2-base to generate depth map.
Please refer to our [paper](https://arxiv.org/abs/2503.06100) and [github](https://github.com/Tennine2077/PDFNet) for more details."""

class GOSNormalize(object):
    def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
        self.mean = mean
        self.std = std

    def __call__(self,image):
        image = normalize(image,self.mean,self.std)
        return image

transforms = GOSNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

def predict(image):
    H,W = image.shape[:2]
    depth = DAMV2.infer_image(image)
    image = torch.nn.functional.interpolate(torch.from_numpy(image).permute(2,0,1)[None,...],size=[1024,1024],mode='bilinear',align_corners=True)[0]
    depth = torch.nn.functional.interpolate(torch.from_numpy(depth)[None,None,...],size=[1024,1024],mode='bilinear',align_corners=True)
    image = torch.divide(image,255.0)
    depth = torch.divide(depth,255.0)
    image = transforms(image).unsqueeze(0)
    DIS_map = model.inference(image.to(device),depth.to(device))[0][0][0].cpu()
    DIS_map = cv2.resize(np.array(DIS_map), (W,H))
    return DIS_map

with gr.Blocks(css=css) as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    gr.Markdown("### Dichotomous Image Segmentation demo")

    with gr.Row():
        input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
        dis_image = gr.Image(label="Pedict View",type='numpy', elem_id='img-display-output')
        # dis_image_slider = ImageSlider(label="Pedict View", type="pil", elem_id='img-display-output',upload_count=2)
    submit = gr.Button(value="Compute")

    def on_submit(image):
        original_image = image.copy()

        DIS_map = predict(np.array(image))
        DIS_map = (DIS_map - DIS_map.min()) / (DIS_map.max() - DIS_map.min()) * 255.0
        # matting = (DIS_map[...,None] / 255.0 * original_image) + (255-DIS_map[...,None])
        alpha_img = np.concatenate([np.array(original_image),DIS_map[...,None]],axis=-1).astype(np.uint16)
        return alpha_img

    submit.click(on_submit, inputs=[input_image], outputs=dis_image)

    example_files = os.listdir('assets/examples')
    example_files.sort()
    example_files = [os.path.join('assets/examples', filename) for filename in example_files]
    examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=dis_image, fn=on_submit)

if __name__ == '__main__':
    demo.queue().launch(share=True)