Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,222 Bytes
38a3c61 1ef2263 684956c 37e8687 7f89f2f 38a3c61 4a30677 f73ccd7 c55bc6a f73ccd7 38a3c61 41517aa 38a3c61 eeed331 4b470c5 4497dc2 eeed331 4497dc2 38a3c61 945554c 37e8687 38a3c61 6d6e2b4 38a3c61 684956c 945554c d3f8823 945554c d3f8823 945554c d3f8823 945554c d3f8823 945554c d3f8823 945554c d3f8823 945554c d3f8823 945554c d3f8823 945554c d3f8823 684956c 37e8687 684956c 37e8687 945554c 37e8687 684956c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from transformers import pipeline
from torchvision import transforms
from PIL import Image
import requests
from io import BytesIO
from steps.preprocess import process_image
from huggingface_hub import hf_hub_download
from architecture.resnet import ResNet
import torch
import logging
from typing import List
import httpx
import asyncio
app = FastAPI()
image_size = 256
hf_token = os.environ.get("api_read")
VALID_API_KEYS = os.environ.get("api_key")
@app.middleware("http")
async def verify_api_key(request, call_next):
api_key = request.headers.get("x-api-key")
if api_key is None or api_key not in VALID_API_KEYS:
raise HTTPException(status_code=403, detail="Unauthorized")
response = await call_next(request)
return response
models_locations = [
# {
# "repo_id": "TamisAI/category-lamp",
# "subfolder": "maison-jansen/palmtree-152-0005-32-256",
# "filename": "palmtree-jansen.pth",
# },
{
"repo_id": "TamisAI/category-lamp",
"subfolder": "maison-charles/corail-152-0001-32-256-L1",
"filename": "maison-charles-corail-L1.pth",
},
{
"repo_id": "TamisAI/category-lamp",
"subfolder": "michel-armand/flamme-152-0001A-32-256-L1",
"filename": "flamme-L1.pth",
},
]
device = torch.device("cpu")
# Modèle de données pour les requêtes
class PredictRequest(BaseModel):
imageUrl: str
modelName: str
torch.set_num_threads(8)
# Dictionnaire pour stocker les pipelines de modèles
model_pipelines = {}
# Create a single instance of the ResNet model
base_model = ResNet("resnet152", num_output_neurons=2).to(device)
@app.on_event("startup")
async def load_models():
# Charger les modèles au démarrage
print(f"Loading models...{len(models_locations)}")
for model_location in models_locations:
try:
print(f"Loading model: {model_location['filename']}")
model_weight = hf_hub_download(
repo_id=model_location["repo_id"],
subfolder=model_location["subfolder"],
filename=model_location["filename"],
token=hf_token,
)
model = base_model.__class__("resnet152", num_output_neurons=2).to(device)
model.load_state_dict(
torch.load(model_weight, weights_only=True, map_location=device)
)
model.eval()
model_pipelines[model_location["filename"]] = model
except Exception as e:
print(f"Error loading model {model_location['filename']}: {e}")
print(f"Models loaded. {len(model_pipelines)}")
@app.post("/predict")
async def predict(request: PredictRequest):
image_url = request.imageUrl
model_name = request.modelName
# Télécharger l'image depuis l'URL
try:
response = requests.get(image_url)
image = Image.open(BytesIO(response.content))
except Exception as e:
raise HTTPException(status_code=400, detail="Invalid image URL")
# Vérifier si le modèle est chargé
if model_name not in model_pipelines:
raise HTTPException(status_code=404, detail="Model not found")
# Preprocess the image
processed_image = process_image(image, size=image_size)
# Convert to tensor
image_tensor = transforms.ToTensor()(processed_image).unsqueeze(0)
model = model_pipelines[model_name]
# Perform inference
with torch.no_grad():
outputs = model(image_tensor)
probabilities = torch.nn.functional.softmax(outputs, dim=1)
predicted_probabilities = probabilities.numpy().tolist()
confidence = round(predicted_probabilities[0][1], 2)
logging.info("confidence: %s", confidence)
# Return the probabilities as JSON
return JSONResponse(content={"confidence": confidence})
class BatchPredictRequest(BaseModel):
imageUrls: List[str]
modelName: str
# @app.post("/batch_predict")
# async def batch_predict(request: BatchPredictRequest):
# model_name = request.modelName
# results = []
# # Verify if the model is loaded
# if model_name not in model_pipelines:
# raise HTTPException(status_code=404, detail="Model not found")
# model = model_pipelines[model_name]
# # Asynchronously process each image
# async with httpx.AsyncClient() as client:
# for image_url in request.imageUrls:
# try:
# response = await client.get(image_url)
# image = Image.open(BytesIO(response.content))
# except Exception as e:
# results.append({"imageUrl": image_url, "error": "Invalid image URL"})
# continue
# # Preprocess the image
# processed_image = process_image(image, size=image_size)
# # Convert to tensor
# image_tensor = transforms.ToTensor()(processed_image).unsqueeze(0)
# # Perform inference
# with torch.no_grad():
# outputs = model(image_tensor)
# probabilities = torch.nn.functional.softmax(outputs, dim=1)
# predicted_probabilities = probabilities.numpy().tolist()
# confidence = round(predicted_probabilities[0][1], 2)
# results.append({"imageUrl": image_url, "confidence": confidence})
# # Return the results as JSON
# return JSONResponse(content={"results": results})
@app.post("/batch_predict")
async def batch_predict(request: BatchPredictRequest):
model_name = request.modelName
# Verify if the model is loaded
if model_name not in model_pipelines:
raise HTTPException(status_code=404, detail="Model not found")
model = model_pipelines[model_name]
semaphore = asyncio.Semaphore(
8
) # Limiter à 8 tâches simultanées pour éviter de surcharger la machine
async def process_single_image(image_url):
async with semaphore:
try:
async with httpx.AsyncClient() as client:
response = await client.get(image_url)
image = Image.open(BytesIO(response.content))
except Exception:
return {"imageUrl": image_url, "error": "Invalid image URL"}
# Preprocess the image
processed_image = process_image(image, size=image_size)
# Convert to tensor
image_tensor = transforms.ToTensor()(processed_image).unsqueeze(0)
# Perform inference
with torch.no_grad():
outputs = model(image_tensor)
probabilities = torch.nn.functional.softmax(outputs, dim=1)
predicted_probabilities = probabilities.numpy().tolist()
confidence = round(predicted_probabilities[0][1], 2)
return {"imageUrl": image_url, "confidence": confidence}
# Launch tasks in parallel
tasks = [process_single_image(url) for url in request.imageUrls]
results = await asyncio.gather(*tasks)
# Return the results as JSON
return JSONResponse(content={"results": results})
|