Spaces:
Sleeping
Sleeping
Commit
·
945554c
1
Parent(s):
37e8687
try 8 threads
Browse files
main.py
CHANGED
@@ -54,7 +54,7 @@ class PredictRequest(BaseModel):
|
|
54 |
modelName: str
|
55 |
|
56 |
|
57 |
-
torch.set_num_threads(
|
58 |
|
59 |
# Dictionnaire pour stocker les pipelines de modèles
|
60 |
model_pipelines = {}
|
@@ -128,44 +128,44 @@ class BatchPredictRequest(BaseModel):
|
|
128 |
modelName: str
|
129 |
|
130 |
|
131 |
-
@app.post("/batch_predict")
|
132 |
-
async def batch_predict(request: BatchPredictRequest):
|
133 |
-
|
134 |
-
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
|
140 |
-
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
|
152 |
-
|
153 |
-
|
154 |
|
155 |
-
|
156 |
-
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
|
165 |
-
|
166 |
|
167 |
-
|
168 |
-
|
169 |
|
170 |
|
171 |
@app.post("/batch_predict")
|
@@ -178,7 +178,7 @@ async def batch_predict(request: BatchPredictRequest):
|
|
178 |
|
179 |
model = model_pipelines[model_name]
|
180 |
semaphore = asyncio.Semaphore(
|
181 |
-
|
182 |
) # Limiter à 8 tâches simultanées pour éviter de surcharger la machine
|
183 |
|
184 |
async def process_single_image(image_url):
|
|
|
54 |
modelName: str
|
55 |
|
56 |
|
57 |
+
torch.set_num_threads(8)
|
58 |
|
59 |
# Dictionnaire pour stocker les pipelines de modèles
|
60 |
model_pipelines = {}
|
|
|
128 |
modelName: str
|
129 |
|
130 |
|
131 |
+
# @app.post("/batch_predict")
|
132 |
+
# async def batch_predict(request: BatchPredictRequest):
|
133 |
+
# model_name = request.modelName
|
134 |
+
# results = []
|
135 |
|
136 |
+
# # Verify if the model is loaded
|
137 |
+
# if model_name not in model_pipelines:
|
138 |
+
# raise HTTPException(status_code=404, detail="Model not found")
|
139 |
|
140 |
+
# model = model_pipelines[model_name]
|
141 |
|
142 |
+
# # Asynchronously process each image
|
143 |
+
# async with httpx.AsyncClient() as client:
|
144 |
+
# for image_url in request.imageUrls:
|
145 |
+
# try:
|
146 |
+
# response = await client.get(image_url)
|
147 |
+
# image = Image.open(BytesIO(response.content))
|
148 |
+
# except Exception as e:
|
149 |
+
# results.append({"imageUrl": image_url, "error": "Invalid image URL"})
|
150 |
+
# continue
|
151 |
|
152 |
+
# # Preprocess the image
|
153 |
+
# processed_image = process_image(image, size=image_size)
|
154 |
|
155 |
+
# # Convert to tensor
|
156 |
+
# image_tensor = transforms.ToTensor()(processed_image).unsqueeze(0)
|
157 |
|
158 |
+
# # Perform inference
|
159 |
+
# with torch.no_grad():
|
160 |
+
# outputs = model(image_tensor)
|
161 |
+
# probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
162 |
+
# predicted_probabilities = probabilities.numpy().tolist()
|
163 |
+
# confidence = round(predicted_probabilities[0][1], 2)
|
164 |
|
165 |
+
# results.append({"imageUrl": image_url, "confidence": confidence})
|
166 |
|
167 |
+
# # Return the results as JSON
|
168 |
+
# return JSONResponse(content={"results": results})
|
169 |
|
170 |
|
171 |
@app.post("/batch_predict")
|
|
|
178 |
|
179 |
model = model_pipelines[model_name]
|
180 |
semaphore = asyncio.Semaphore(
|
181 |
+
8
|
182 |
) # Limiter à 8 tâches simultanées pour éviter de surcharger la machine
|
183 |
|
184 |
async def process_single_image(image_url):
|