Spaces:
Sleeping
Sleeping
File size: 2,224 Bytes
cb78863 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import os
import gradio as gr
from pydub import AudioSegment # For handling audio files
from gtts import gTTS
import whisper # Correct import from openai-whisper package
from groq import Groq
import tempfile # For managing temporary audio file creation
# Load Whisper model
whisper_model = whisper.load_model("base")
client = Groq(api_key="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")
def transcribe_audio(audio_file):
# Since the audio is already in .wav, we directly pass it to Whisper
result = whisper_model.transcribe(audio_file)
return result['text']
def get_response(prompt):
# Generate response using Llama 8B via Groq API
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="llama3-8b-8192",
)
return chat_completion.choices[0].message.content
def text_to_speech(text):
# Convert text to speech using gTTS
tts = gTTS(text)
# Save TTS output to a temporary file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio_file:
tts.save(temp_audio_file.name)
return temp_audio_file.name # Return the file path of the .wav file
def chatbot(audio_file):
# 1. Transcribe audio to text
user_input = transcribe_audio(audio_file)
print(f"Transcribed text: {user_input}") # Debugging output
# 2. Get response from Llama 8B based on transcribed input
response = get_response(user_input)
print(f"Llama response: {response}") # Debugging output
# 3. Convert the response text to speech
audio_output = text_to_speech(response)
print(f"Generated audio output: {audio_output}") # Debugging output
return audio_output # Return the .wav audio file path for Gradio to play
# Gradio interface
iface = gr.Interface(
fn=chatbot,
inputs=gr.Audio(type="filepath", format="wav"), # Accept .wav audio file input (mic or upload)
outputs=gr.Audio(type="filepath", format="wav"), # Output is the file path to the generated .wav audio
live=True,
title="Voice to Voice Chatbot",
description="Upload a .wav file or record using the microphone, and the chatbot will respond with audio!"
)
iface.launch() |