File size: 2,224 Bytes
cb78863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import gradio as gr
from pydub import AudioSegment  # For handling audio files
from gtts import gTTS
import whisper  # Correct import from openai-whisper package
from groq import Groq
import tempfile  # For managing temporary audio file creation

# Load Whisper model
whisper_model = whisper.load_model("base")

client = Groq(api_key="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")


def transcribe_audio(audio_file):
    # Since the audio is already in .wav, we directly pass it to Whisper
    result = whisper_model.transcribe(audio_file)
    return result['text']

def get_response(prompt):
    # Generate response using Llama 8B via Groq API
    chat_completion = client.chat.completions.create(
        messages=[{"role": "user", "content": prompt}],
        model="llama3-8b-8192",
    )
    return chat_completion.choices[0].message.content

def text_to_speech(text):
    # Convert text to speech using gTTS
    tts = gTTS(text)
    # Save TTS output to a temporary file
    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio_file:
        tts.save(temp_audio_file.name)
        return temp_audio_file.name  # Return the file path of the .wav file

def chatbot(audio_file):
    # 1. Transcribe audio to text
    user_input = transcribe_audio(audio_file)
    print(f"Transcribed text: {user_input}")  # Debugging output

    # 2. Get response from Llama 8B based on transcribed input
    response = get_response(user_input)
    print(f"Llama response: {response}")  # Debugging output

    # 3. Convert the response text to speech
    audio_output = text_to_speech(response)
    print(f"Generated audio output: {audio_output}")  # Debugging output

    return audio_output  # Return the .wav audio file path for Gradio to play

# Gradio interface
iface = gr.Interface(
    fn=chatbot,
    inputs=gr.Audio(type="filepath", format="wav"),  # Accept .wav audio file input (mic or upload)
    outputs=gr.Audio(type="filepath", format="wav"),  # Output is the file path to the generated .wav audio
    live=True,
    title="Voice to Voice Chatbot",
    description="Upload a .wav file or record using the microphone, and the chatbot will respond with audio!"
)

iface.launch()