Spaces:
Sleeping
Sleeping
Initialized app.py
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from pydub import AudioSegment # For handling audio files
|
4 |
+
from gtts import gTTS
|
5 |
+
import whisper # Correct import from openai-whisper package
|
6 |
+
from groq import Groq
|
7 |
+
import tempfile # For managing temporary audio file creation
|
8 |
+
|
9 |
+
# Load Whisper model
|
10 |
+
whisper_model = whisper.load_model("base")
|
11 |
+
|
12 |
+
client = Groq(api_key="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")
|
13 |
+
|
14 |
+
|
15 |
+
def transcribe_audio(audio_file):
|
16 |
+
# Since the audio is already in .wav, we directly pass it to Whisper
|
17 |
+
result = whisper_model.transcribe(audio_file)
|
18 |
+
return result['text']
|
19 |
+
|
20 |
+
def get_response(prompt):
|
21 |
+
# Generate response using Llama 8B via Groq API
|
22 |
+
chat_completion = client.chat.completions.create(
|
23 |
+
messages=[{"role": "user", "content": prompt}],
|
24 |
+
model="llama3-8b-8192",
|
25 |
+
)
|
26 |
+
return chat_completion.choices[0].message.content
|
27 |
+
|
28 |
+
def text_to_speech(text):
|
29 |
+
# Convert text to speech using gTTS
|
30 |
+
tts = gTTS(text)
|
31 |
+
# Save TTS output to a temporary file
|
32 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio_file:
|
33 |
+
tts.save(temp_audio_file.name)
|
34 |
+
return temp_audio_file.name # Return the file path of the .wav file
|
35 |
+
|
36 |
+
def chatbot(audio_file):
|
37 |
+
# 1. Transcribe audio to text
|
38 |
+
user_input = transcribe_audio(audio_file)
|
39 |
+
print(f"Transcribed text: {user_input}") # Debugging output
|
40 |
+
|
41 |
+
# 2. Get response from Llama 8B based on transcribed input
|
42 |
+
response = get_response(user_input)
|
43 |
+
print(f"Llama response: {response}") # Debugging output
|
44 |
+
|
45 |
+
# 3. Convert the response text to speech
|
46 |
+
audio_output = text_to_speech(response)
|
47 |
+
print(f"Generated audio output: {audio_output}") # Debugging output
|
48 |
+
|
49 |
+
return audio_output # Return the .wav audio file path for Gradio to play
|
50 |
+
|
51 |
+
# Gradio interface
|
52 |
+
iface = gr.Interface(
|
53 |
+
fn=chatbot,
|
54 |
+
inputs=gr.Audio(type="filepath", format="wav"), # Accept .wav audio file input (mic or upload)
|
55 |
+
outputs=gr.Audio(type="filepath", format="wav"), # Output is the file path to the generated .wav audio
|
56 |
+
live=True,
|
57 |
+
title="Voice to Voice Chatbot",
|
58 |
+
description="Upload a .wav file or record using the microphone, and the chatbot will respond with audio!"
|
59 |
+
)
|
60 |
+
|
61 |
+
iface.launch()
|