Spaces:
Sleeping
Sleeping
File size: 1,615 Bytes
cb78863 b8bbb80 cb78863 b8bbb80 cb78863 b8bbb80 cb78863 b8bbb80 cb78863 b8bbb80 cb78863 b8bbb80 cb78863 b8bbb80 cb78863 b8bbb80 cb78863 b8bbb80 cb78863 b8bbb80 cb78863 b8bbb80 cb78863 b8bbb80 cb78863 b8bbb80 cb78863 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import os
import gradio as gr
import numpy as np
from gtts import gTTS
import torch
import whisper # Correct import from openai-whisper package
from groq import Groq
import io
import tempfile # To handle temporary audio file saving
# Initialize Groq API client
client = Groq(api_key="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")
# Load Whisper model
whisper_model = whisper.load_model("base") # Use 'whisper' directly
def transcribe_audio(audio_file):
# Load audio
audio, sr = sf.read(audio_file)
# Transcribe audio using Whisper
result = whisper_model.transcribe(audio, language="en")
return result['text']
def get_response(prompt):
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="llama3-8b-8192",
)
return chat_completion.choices[0].message.content
def text_to_speech(text):
tts = gTTS(text)
audio_buffer = io.BytesIO()
tts.save(audio_buffer)
audio_buffer.seek(0)
return audio_buffer
def chatbot(audio_file):
# Transcribe audio to text
user_input = transcribe_audio(audio_file)
# Get response from Llama 8B
response = get_response(user_input)
# Convert response to speech
audio_output = text_to_speech(response)
return audio_output
# Gradio interface
iface = gr.Interface(
fn=chatbot,
inputs=gr.Audio(type="filepath"), # Remove 'source' argument
outputs=gr.Audio(type="filepath"),
live=True,
title="Voice to Voice Chatbot",
description="Speak into the microphone, and the chatbot will respond!"
)
iface.launch() |