Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# import streamlit as st
|
2 |
# import os
|
3 |
# import re
|
@@ -6,16 +143,16 @@
|
|
6 |
# from PyPDF2 import PdfReader
|
7 |
# from peft import get_peft_model, LoraConfig, TaskType
|
8 |
|
9 |
-
# # β
|
10 |
-
# device = torch.device("cpu")
|
11 |
|
12 |
-
# # πΉ Load IBM Granite Model (CPU
|
13 |
# MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
|
14 |
|
15 |
# model = AutoModelForCausalLM.from_pretrained(
|
16 |
# MODEL_NAME,
|
17 |
-
# device_map="
|
18 |
-
# torch_dtype=torch.
|
19 |
# )
|
20 |
|
21 |
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
@@ -32,7 +169,7 @@
|
|
32 |
# model = get_peft_model(model, lora_config)
|
33 |
# model.eval()
|
34 |
|
35 |
-
# # π Function to Read & Extract Text from PDFs
|
36 |
# def read_files(file):
|
37 |
# file_context = ""
|
38 |
# reader = PdfReader(file)
|
@@ -77,13 +214,11 @@
|
|
77 |
# unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
|
78 |
# return "\n".join(unique_lines)
|
79 |
|
80 |
-
# # π Function to Handle
|
81 |
-
# def granite_simple(prompt,
|
82 |
-
# file_context = read_files(file) if file else ""
|
83 |
-
|
84 |
# system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
|
85 |
|
86 |
-
# messages = format_prompt(system_message, prompt,
|
87 |
# input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
88 |
|
89 |
# response = generate_response(input_text)
|
@@ -103,161 +238,26 @@
|
|
103 |
# top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
|
104 |
# temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)
|
105 |
|
106 |
-
# # πΉ File Upload Section
|
107 |
# uploaded_file = st.file_uploader("π Upload a contract document (PDF)", type="pdf")
|
108 |
|
109 |
# if uploaded_file is not None:
|
110 |
-
# temp_file_path = "temp_uploaded_contract.pdf"
|
111 |
-
# with open(temp_file_path, "wb") as f:
|
112 |
-
# f.write(uploaded_file.getbuffer())
|
113 |
-
|
114 |
# st.success("β
File uploaded successfully!")
|
115 |
|
|
|
|
|
|
|
116 |
# # πΉ User Input for Analysis
|
117 |
# user_prompt = "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
|
118 |
|
119 |
# if st.button("π Analyze Document"):
|
120 |
# with st.spinner("Analyzing contract document... β³"):
|
121 |
-
# final_answer = granite_simple(user_prompt,
|
122 |
|
123 |
# # πΉ Display Analysis Result
|
124 |
# st.subheader("π Analysis Result")
|
125 |
# st.write(final_answer)
|
126 |
|
127 |
-
# # πΉ Remove Temporary File
|
128 |
-
# os.remove(temp_file_path)
|
129 |
-
|
130 |
# # π₯ Run Streamlit App
|
131 |
# if __name__ == '__main__':
|
132 |
# main()
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
import streamlit as st
|
139 |
-
import os
|
140 |
-
import re
|
141 |
-
import torch
|
142 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
143 |
-
from PyPDF2 import PdfReader
|
144 |
-
from peft import get_peft_model, LoraConfig, TaskType
|
145 |
-
|
146 |
-
# β
Auto-detect GPU for Hugging Face Spaces
|
147 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
148 |
-
|
149 |
-
# πΉ Load IBM Granite Model (CPU/GPU Compatible)
|
150 |
-
MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
|
151 |
-
|
152 |
-
model = AutoModelForCausalLM.from_pretrained(
|
153 |
-
MODEL_NAME,
|
154 |
-
device_map="auto", # Auto-detect GPU if available
|
155 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
156 |
-
)
|
157 |
-
|
158 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
159 |
-
|
160 |
-
# πΉ Apply LoRA Fine-Tuning Configuration
|
161 |
-
lora_config = LoraConfig(
|
162 |
-
r=8,
|
163 |
-
lora_alpha=32,
|
164 |
-
target_modules=["q_proj", "v_proj"],
|
165 |
-
lora_dropout=0.1,
|
166 |
-
bias="none",
|
167 |
-
task_type=TaskType.CAUSAL_LM
|
168 |
-
)
|
169 |
-
model = get_peft_model(model, lora_config)
|
170 |
-
model.eval()
|
171 |
-
|
172 |
-
# π Function to Read & Extract Text from PDFs (No Temp File Needed)
|
173 |
-
def read_files(file):
|
174 |
-
file_context = ""
|
175 |
-
reader = PdfReader(file)
|
176 |
-
|
177 |
-
for page in reader.pages:
|
178 |
-
text = page.extract_text()
|
179 |
-
if text:
|
180 |
-
file_context += text + "\n"
|
181 |
-
|
182 |
-
return file_context.strip()
|
183 |
-
|
184 |
-
# π Function to Format AI Prompts
|
185 |
-
def format_prompt(system_msg, user_msg, file_context=""):
|
186 |
-
if file_context:
|
187 |
-
system_msg += f" The user has provided a contract document. Use its context to generate insights, but do not repeat or summarize the document itself."
|
188 |
-
return [
|
189 |
-
{"role": "system", "content": system_msg},
|
190 |
-
{"role": "user", "content": user_msg}
|
191 |
-
]
|
192 |
-
|
193 |
-
# π Function to Generate AI Responses
|
194 |
-
def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
|
195 |
-
model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
|
196 |
-
|
197 |
-
with torch.no_grad():
|
198 |
-
output = model.generate(
|
199 |
-
**model_inputs,
|
200 |
-
max_new_tokens=max_tokens,
|
201 |
-
do_sample=True,
|
202 |
-
top_p=top_p,
|
203 |
-
temperature=temperature,
|
204 |
-
num_return_sequences=1,
|
205 |
-
pad_token_id=tokenizer.eos_token_id
|
206 |
-
)
|
207 |
-
|
208 |
-
return tokenizer.decode(output[0], skip_special_tokens=True)
|
209 |
-
|
210 |
-
# π Function to Clean AI Output
|
211 |
-
def post_process(text):
|
212 |
-
cleaned = re.sub(r'ζ₯+', '', text) # Remove unwanted symbols
|
213 |
-
lines = cleaned.splitlines()
|
214 |
-
unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
|
215 |
-
return "\n".join(unique_lines)
|
216 |
-
|
217 |
-
# π Function to Handle AI Analysis (No Temp File)
|
218 |
-
def granite_simple(prompt, file_content):
|
219 |
-
system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
|
220 |
-
|
221 |
-
messages = format_prompt(system_message, prompt, file_content)
|
222 |
-
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
223 |
-
|
224 |
-
response = generate_response(input_text)
|
225 |
-
return post_process(response)
|
226 |
-
|
227 |
-
# πΉ Streamlit UI
|
228 |
-
def main():
|
229 |
-
st.set_page_config(page_title="Contract Analysis AI", page_icon="π", layout="wide")
|
230 |
-
|
231 |
-
st.title("π AI-Powered Contract Analysis Tool")
|
232 |
-
st.write("Upload a contract document (PDF) for a detailed AI-driven legal and technical analysis.")
|
233 |
-
|
234 |
-
# πΉ Sidebar Settings
|
235 |
-
with st.sidebar:
|
236 |
-
st.header("βοΈ Settings")
|
237 |
-
max_tokens = st.slider("Max Tokens", 50, 1000, 250, 50)
|
238 |
-
top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
|
239 |
-
temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)
|
240 |
-
|
241 |
-
# πΉ File Upload Section (No Temp File)
|
242 |
-
uploaded_file = st.file_uploader("π Upload a contract document (PDF)", type="pdf")
|
243 |
-
|
244 |
-
if uploaded_file is not None:
|
245 |
-
st.success("β
File uploaded successfully!")
|
246 |
-
|
247 |
-
# πΉ Read PDF Content (No Temp File)
|
248 |
-
file_content = read_files(uploaded_file)
|
249 |
-
|
250 |
-
# πΉ User Input for Analysis
|
251 |
-
user_prompt = "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
|
252 |
-
|
253 |
-
if st.button("π Analyze Document"):
|
254 |
-
with st.spinner("Analyzing contract document... β³"):
|
255 |
-
final_answer = granite_simple(user_prompt, file_content)
|
256 |
-
|
257 |
-
# πΉ Display Analysis Result
|
258 |
-
st.subheader("π Analysis Result")
|
259 |
-
st.write(final_answer)
|
260 |
-
|
261 |
-
# π₯ Run Streamlit App
|
262 |
-
if __name__ == '__main__':
|
263 |
-
main()
|
|
|
1 |
+
# # import streamlit as st
|
2 |
+
# # import os
|
3 |
+
# # import re
|
4 |
+
# # import torch
|
5 |
+
# # from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
# # from PyPDF2 import PdfReader
|
7 |
+
# # from peft import get_peft_model, LoraConfig, TaskType
|
8 |
+
|
9 |
+
# # # β
Force CPU execution for Streamlit Cloud
|
10 |
+
# # device = torch.device("cpu")
|
11 |
+
|
12 |
+
# # # πΉ Load IBM Granite Model (CPU-Compatible)
|
13 |
+
# # MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
|
14 |
+
|
15 |
+
# # model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
# # MODEL_NAME,
|
17 |
+
# # device_map="cpu", # Force CPU execution
|
18 |
+
# # torch_dtype=torch.float32 # Use float32 since Streamlit runs on CPU
|
19 |
+
# # )
|
20 |
+
|
21 |
+
# # tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
22 |
+
|
23 |
+
# # # πΉ Apply LoRA Fine-Tuning Configuration
|
24 |
+
# # lora_config = LoraConfig(
|
25 |
+
# # r=8,
|
26 |
+
# # lora_alpha=32,
|
27 |
+
# # target_modules=["q_proj", "v_proj"],
|
28 |
+
# # lora_dropout=0.1,
|
29 |
+
# # bias="none",
|
30 |
+
# # task_type=TaskType.CAUSAL_LM
|
31 |
+
# # )
|
32 |
+
# # model = get_peft_model(model, lora_config)
|
33 |
+
# # model.eval()
|
34 |
+
|
35 |
+
# # # π Function to Read & Extract Text from PDFs
|
36 |
+
# # def read_files(file):
|
37 |
+
# # file_context = ""
|
38 |
+
# # reader = PdfReader(file)
|
39 |
+
|
40 |
+
# # for page in reader.pages:
|
41 |
+
# # text = page.extract_text()
|
42 |
+
# # if text:
|
43 |
+
# # file_context += text + "\n"
|
44 |
+
|
45 |
+
# # return file_context.strip()
|
46 |
+
|
47 |
+
# # # π Function to Format AI Prompts
|
48 |
+
# # def format_prompt(system_msg, user_msg, file_context=""):
|
49 |
+
# # if file_context:
|
50 |
+
# # system_msg += f" The user has provided a contract document. Use its context to generate insights, but do not repeat or summarize the document itself."
|
51 |
+
# # return [
|
52 |
+
# # {"role": "system", "content": system_msg},
|
53 |
+
# # {"role": "user", "content": user_msg}
|
54 |
+
# # ]
|
55 |
+
|
56 |
+
# # # π Function to Generate AI Responses
|
57 |
+
# # def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
|
58 |
+
# # model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
|
59 |
+
|
60 |
+
# # with torch.no_grad():
|
61 |
+
# # output = model.generate(
|
62 |
+
# # **model_inputs,
|
63 |
+
# # max_new_tokens=max_tokens,
|
64 |
+
# # do_sample=True,
|
65 |
+
# # top_p=top_p,
|
66 |
+
# # temperature=temperature,
|
67 |
+
# # num_return_sequences=1,
|
68 |
+
# # pad_token_id=tokenizer.eos_token_id
|
69 |
+
# # )
|
70 |
+
|
71 |
+
# # return tokenizer.decode(output[0], skip_special_tokens=True)
|
72 |
+
|
73 |
+
# # # π Function to Clean AI Output
|
74 |
+
# # def post_process(text):
|
75 |
+
# # cleaned = re.sub(r'ζ₯+', '', text) # Remove unwanted symbols
|
76 |
+
# # lines = cleaned.splitlines()
|
77 |
+
# # unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
|
78 |
+
# # return "\n".join(unique_lines)
|
79 |
+
|
80 |
+
# # # π Function to Handle RAG with IBM Granite & Streamlit
|
81 |
+
# # def granite_simple(prompt, file):
|
82 |
+
# # file_context = read_files(file) if file else ""
|
83 |
+
|
84 |
+
# # system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
|
85 |
+
|
86 |
+
# # messages = format_prompt(system_message, prompt, file_context)
|
87 |
+
# # input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
88 |
+
|
89 |
+
# # response = generate_response(input_text)
|
90 |
+
# # return post_process(response)
|
91 |
+
|
92 |
+
# # # πΉ Streamlit UI
|
93 |
+
# # def main():
|
94 |
+
# # st.set_page_config(page_title="Contract Analysis AI", page_icon="π", layout="wide")
|
95 |
+
|
96 |
+
# # st.title("π AI-Powered Contract Analysis Tool")
|
97 |
+
# # st.write("Upload a contract document (PDF) for a detailed AI-driven legal and technical analysis.")
|
98 |
+
|
99 |
+
# # # πΉ Sidebar Settings
|
100 |
+
# # with st.sidebar:
|
101 |
+
# # st.header("βοΈ Settings")
|
102 |
+
# # max_tokens = st.slider("Max Tokens", 50, 1000, 250, 50)
|
103 |
+
# # top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
|
104 |
+
# # temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)
|
105 |
+
|
106 |
+
# # # πΉ File Upload Section
|
107 |
+
# # uploaded_file = st.file_uploader("π Upload a contract document (PDF)", type="pdf")
|
108 |
+
|
109 |
+
# # if uploaded_file is not None:
|
110 |
+
# # temp_file_path = "temp_uploaded_contract.pdf"
|
111 |
+
# # with open(temp_file_path, "wb") as f:
|
112 |
+
# # f.write(uploaded_file.getbuffer())
|
113 |
+
|
114 |
+
# # st.success("β
File uploaded successfully!")
|
115 |
+
|
116 |
+
# # # πΉ User Input for Analysis
|
117 |
+
# # user_prompt = "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
|
118 |
+
|
119 |
+
# # if st.button("π Analyze Document"):
|
120 |
+
# # with st.spinner("Analyzing contract document... β³"):
|
121 |
+
# # final_answer = granite_simple(user_prompt, temp_file_path)
|
122 |
+
|
123 |
+
# # # πΉ Display Analysis Result
|
124 |
+
# # st.subheader("π Analysis Result")
|
125 |
+
# # st.write(final_answer)
|
126 |
+
|
127 |
+
# # # πΉ Remove Temporary File
|
128 |
+
# # os.remove(temp_file_path)
|
129 |
+
|
130 |
+
# # # π₯ Run Streamlit App
|
131 |
+
# # if __name__ == '__main__':
|
132 |
+
# # main()
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
# import streamlit as st
|
139 |
# import os
|
140 |
# import re
|
|
|
143 |
# from PyPDF2 import PdfReader
|
144 |
# from peft import get_peft_model, LoraConfig, TaskType
|
145 |
|
146 |
+
# # β
Auto-detect GPU for Hugging Face Spaces
|
147 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
148 |
|
149 |
+
# # πΉ Load IBM Granite Model (CPU/GPU Compatible)
|
150 |
# MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
|
151 |
|
152 |
# model = AutoModelForCausalLM.from_pretrained(
|
153 |
# MODEL_NAME,
|
154 |
+
# device_map="auto", # Auto-detect GPU if available
|
155 |
+
# torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
156 |
# )
|
157 |
|
158 |
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
|
|
169 |
# model = get_peft_model(model, lora_config)
|
170 |
# model.eval()
|
171 |
|
172 |
+
# # π Function to Read & Extract Text from PDFs (No Temp File Needed)
|
173 |
# def read_files(file):
|
174 |
# file_context = ""
|
175 |
# reader = PdfReader(file)
|
|
|
214 |
# unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
|
215 |
# return "\n".join(unique_lines)
|
216 |
|
217 |
+
# # π Function to Handle AI Analysis (No Temp File)
|
218 |
+
# def granite_simple(prompt, file_content):
|
|
|
|
|
219 |
# system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
|
220 |
|
221 |
+
# messages = format_prompt(system_message, prompt, file_content)
|
222 |
# input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
223 |
|
224 |
# response = generate_response(input_text)
|
|
|
238 |
# top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
|
239 |
# temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)
|
240 |
|
241 |
+
# # πΉ File Upload Section (No Temp File)
|
242 |
# uploaded_file = st.file_uploader("π Upload a contract document (PDF)", type="pdf")
|
243 |
|
244 |
# if uploaded_file is not None:
|
|
|
|
|
|
|
|
|
245 |
# st.success("β
File uploaded successfully!")
|
246 |
|
247 |
+
# # πΉ Read PDF Content (No Temp File)
|
248 |
+
# file_content = read_files(uploaded_file)
|
249 |
+
|
250 |
# # πΉ User Input for Analysis
|
251 |
# user_prompt = "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
|
252 |
|
253 |
# if st.button("π Analyze Document"):
|
254 |
# with st.spinner("Analyzing contract document... β³"):
|
255 |
+
# final_answer = granite_simple(user_prompt, file_content)
|
256 |
|
257 |
# # πΉ Display Analysis Result
|
258 |
# st.subheader("π Analysis Result")
|
259 |
# st.write(final_answer)
|
260 |
|
|
|
|
|
|
|
261 |
# # π₯ Run Streamlit App
|
262 |
# if __name__ == '__main__':
|
263 |
# main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|