Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,28 +2,21 @@
|
|
2 |
# import os
|
3 |
# import re
|
4 |
# import torch
|
5 |
-
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
# from PyPDF2 import PdfReader
|
7 |
# from peft import get_peft_model, LoraConfig, TaskType
|
8 |
|
9 |
-
# # β
|
10 |
-
#
|
11 |
|
12 |
-
# # πΉ Load IBM Granite Model
|
13 |
# MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
|
14 |
-
# quant_config = BitsAndBytesConfig(load_in_4bit=True) # Use 4-bit quantization
|
15 |
-
|
16 |
-
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
-
|
18 |
-
# # β
Ensure model initialization correctly
|
19 |
-
# torch.cuda.empty_cache() # Clear GPU memory before loading model
|
20 |
|
21 |
# model = AutoModelForCausalLM.from_pretrained(
|
22 |
# MODEL_NAME,
|
23 |
-
#
|
24 |
-
#
|
25 |
-
#
|
26 |
-
# ).to(device) # Move model to correct device
|
27 |
|
28 |
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
29 |
|
@@ -51,7 +44,6 @@
|
|
51 |
|
52 |
# return file_context.strip()
|
53 |
|
54 |
-
# # π Function to Format AI Prompts
|
55 |
# # π Function to Format AI Prompts
|
56 |
# def format_prompt(system_msg, user_msg, file_context=""):
|
57 |
# if file_context:
|
@@ -60,10 +52,9 @@
|
|
60 |
# {"role": "system", "content": system_msg},
|
61 |
# {"role": "user", "content": user_msg}
|
62 |
# ]
|
|
|
63 |
# # π Function to Generate AI Responses
|
64 |
# def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
|
65 |
-
# torch.cuda.empty_cache() # β
Clear GPU memory before inference
|
66 |
-
|
67 |
# model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
|
68 |
|
69 |
# with torch.no_grad():
|
@@ -125,17 +116,6 @@
|
|
125 |
# # πΉ User Input for Analysis
|
126 |
# user_prompt = "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
|
127 |
|
128 |
-
# # user_prompt = st.text_area(
|
129 |
-
# # "π Describe what you want to analyze:",
|
130 |
-
# # "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
|
131 |
-
# # )
|
132 |
-
# # with st.empty(): # This hides the text area
|
133 |
-
# # user_prompt = st.text_area(
|
134 |
-
# # "π Describe what you want to analyze:",
|
135 |
-
# # "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
|
136 |
-
# # )
|
137 |
-
|
138 |
-
|
139 |
# if st.button("π Analyze Document"):
|
140 |
# with st.spinner("Analyzing contract document... β³"):
|
141 |
# final_answer = granite_simple(user_prompt, temp_file_path)
|
@@ -154,6 +134,7 @@
|
|
154 |
|
155 |
|
156 |
|
|
|
157 |
import streamlit as st
|
158 |
import os
|
159 |
import re
|
@@ -162,16 +143,16 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
162 |
from PyPDF2 import PdfReader
|
163 |
from peft import get_peft_model, LoraConfig, TaskType
|
164 |
|
165 |
-
# β
|
166 |
-
device = torch.device("cpu")
|
167 |
|
168 |
-
# πΉ Load IBM Granite Model (CPU
|
169 |
MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
|
170 |
|
171 |
model = AutoModelForCausalLM.from_pretrained(
|
172 |
MODEL_NAME,
|
173 |
-
device_map="
|
174 |
-
torch_dtype=torch.
|
175 |
)
|
176 |
|
177 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
@@ -188,7 +169,7 @@ lora_config = LoraConfig(
|
|
188 |
model = get_peft_model(model, lora_config)
|
189 |
model.eval()
|
190 |
|
191 |
-
# π Function to Read & Extract Text from PDFs
|
192 |
def read_files(file):
|
193 |
file_context = ""
|
194 |
reader = PdfReader(file)
|
@@ -233,13 +214,11 @@ def post_process(text):
|
|
233 |
unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
|
234 |
return "\n".join(unique_lines)
|
235 |
|
236 |
-
# π Function to Handle
|
237 |
-
def granite_simple(prompt,
|
238 |
-
file_context = read_files(file) if file else ""
|
239 |
-
|
240 |
system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
|
241 |
|
242 |
-
messages = format_prompt(system_message, prompt,
|
243 |
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
244 |
|
245 |
response = generate_response(input_text)
|
@@ -259,30 +238,26 @@ def main():
|
|
259 |
top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
|
260 |
temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)
|
261 |
|
262 |
-
# πΉ File Upload Section
|
263 |
uploaded_file = st.file_uploader("π Upload a contract document (PDF)", type="pdf")
|
264 |
|
265 |
if uploaded_file is not None:
|
266 |
-
temp_file_path = "temp_uploaded_contract.pdf"
|
267 |
-
with open(temp_file_path, "wb") as f:
|
268 |
-
f.write(uploaded_file.getbuffer())
|
269 |
-
|
270 |
st.success("β
File uploaded successfully!")
|
271 |
|
|
|
|
|
|
|
272 |
# πΉ User Input for Analysis
|
273 |
user_prompt = "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
|
274 |
|
275 |
if st.button("π Analyze Document"):
|
276 |
with st.spinner("Analyzing contract document... β³"):
|
277 |
-
final_answer = granite_simple(user_prompt,
|
278 |
|
279 |
# πΉ Display Analysis Result
|
280 |
st.subheader("π Analysis Result")
|
281 |
st.write(final_answer)
|
282 |
|
283 |
-
# πΉ Remove Temporary File
|
284 |
-
os.remove(temp_file_path)
|
285 |
-
|
286 |
# π₯ Run Streamlit App
|
287 |
if __name__ == '__main__':
|
288 |
-
main()
|
|
|
2 |
# import os
|
3 |
# import re
|
4 |
# import torch
|
5 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
# from PyPDF2 import PdfReader
|
7 |
# from peft import get_peft_model, LoraConfig, TaskType
|
8 |
|
9 |
+
# # β
Force CPU execution for Streamlit Cloud
|
10 |
+
# device = torch.device("cpu")
|
11 |
|
12 |
+
# # πΉ Load IBM Granite Model (CPU-Compatible)
|
13 |
# MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# model = AutoModelForCausalLM.from_pretrained(
|
16 |
# MODEL_NAME,
|
17 |
+
# device_map="cpu", # Force CPU execution
|
18 |
+
# torch_dtype=torch.float32 # Use float32 since Streamlit runs on CPU
|
19 |
+
# )
|
|
|
20 |
|
21 |
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
22 |
|
|
|
44 |
|
45 |
# return file_context.strip()
|
46 |
|
|
|
47 |
# # π Function to Format AI Prompts
|
48 |
# def format_prompt(system_msg, user_msg, file_context=""):
|
49 |
# if file_context:
|
|
|
52 |
# {"role": "system", "content": system_msg},
|
53 |
# {"role": "user", "content": user_msg}
|
54 |
# ]
|
55 |
+
|
56 |
# # π Function to Generate AI Responses
|
57 |
# def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
|
|
|
|
|
58 |
# model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
|
59 |
|
60 |
# with torch.no_grad():
|
|
|
116 |
# # πΉ User Input for Analysis
|
117 |
# user_prompt = "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
# if st.button("π Analyze Document"):
|
120 |
# with st.spinner("Analyzing contract document... β³"):
|
121 |
# final_answer = granite_simple(user_prompt, temp_file_path)
|
|
|
134 |
|
135 |
|
136 |
|
137 |
+
|
138 |
import streamlit as st
|
139 |
import os
|
140 |
import re
|
|
|
143 |
from PyPDF2 import PdfReader
|
144 |
from peft import get_peft_model, LoraConfig, TaskType
|
145 |
|
146 |
+
# β
Auto-detect GPU for Hugging Face Spaces
|
147 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
148 |
|
149 |
+
# πΉ Load IBM Granite Model (CPU/GPU Compatible)
|
150 |
MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
|
151 |
|
152 |
model = AutoModelForCausalLM.from_pretrained(
|
153 |
MODEL_NAME,
|
154 |
+
device_map="auto", # Auto-detect GPU if available
|
155 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
156 |
)
|
157 |
|
158 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
|
|
169 |
model = get_peft_model(model, lora_config)
|
170 |
model.eval()
|
171 |
|
172 |
+
# π Function to Read & Extract Text from PDFs (No Temp File Needed)
|
173 |
def read_files(file):
|
174 |
file_context = ""
|
175 |
reader = PdfReader(file)
|
|
|
214 |
unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
|
215 |
return "\n".join(unique_lines)
|
216 |
|
217 |
+
# π Function to Handle AI Analysis (No Temp File)
|
218 |
+
def granite_simple(prompt, file_content):
|
|
|
|
|
219 |
system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
|
220 |
|
221 |
+
messages = format_prompt(system_message, prompt, file_content)
|
222 |
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
223 |
|
224 |
response = generate_response(input_text)
|
|
|
238 |
top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
|
239 |
temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)
|
240 |
|
241 |
+
# πΉ File Upload Section (No Temp File)
|
242 |
uploaded_file = st.file_uploader("π Upload a contract document (PDF)", type="pdf")
|
243 |
|
244 |
if uploaded_file is not None:
|
|
|
|
|
|
|
|
|
245 |
st.success("β
File uploaded successfully!")
|
246 |
|
247 |
+
# πΉ Read PDF Content (No Temp File)
|
248 |
+
file_content = read_files(uploaded_file)
|
249 |
+
|
250 |
# πΉ User Input for Analysis
|
251 |
user_prompt = "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
|
252 |
|
253 |
if st.button("π Analyze Document"):
|
254 |
with st.spinner("Analyzing contract document... β³"):
|
255 |
+
final_answer = granite_simple(user_prompt, file_content)
|
256 |
|
257 |
# πΉ Display Analysis Result
|
258 |
st.subheader("π Analysis Result")
|
259 |
st.write(final_answer)
|
260 |
|
|
|
|
|
|
|
261 |
# π₯ Run Streamlit App
|
262 |
if __name__ == '__main__':
|
263 |
+
main()
|