File size: 10,951 Bytes
6523d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e790613
 
 
 
6523d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# import streamlit as st
# import os
# import re
# import torch
# from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
# from PyPDF2 import PdfReader
# from peft import get_peft_model, LoraConfig, TaskType

# # βœ… Fix CUDA Memory Fragmentation
# os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"

# # πŸ”Ή Load IBM Granite Model with 4-bit Quantization
# MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
# quant_config = BitsAndBytesConfig(load_in_4bit=True)  # Use 4-bit quantization

# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# # βœ… Ensure model initialization correctly
# torch.cuda.empty_cache()  # Clear GPU memory before loading model

# model = AutoModelForCausalLM.from_pretrained(
#     MODEL_NAME,
#     quantization_config=quant_config,
#     device_map="auto",  # Auto-assign layers to available GPUs/CPUs
#     torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32  # Use FP16 if GPU is available
# ).to(device)  # Move model to correct device

# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

# # πŸ”Ή Apply LoRA Fine-Tuning Configuration
# lora_config = LoraConfig(
#     r=8,
#     lora_alpha=32,
#     target_modules=["q_proj", "v_proj"],
#     lora_dropout=0.1,
#     bias="none",
#     task_type=TaskType.CAUSAL_LM
# )
# model = get_peft_model(model, lora_config)
# model.eval()

# # πŸ›  Function to Read & Extract Text from PDFs
# def read_files(file):
#     file_context = ""
#     reader = PdfReader(file)
    
#     for page in reader.pages:
#         text = page.extract_text()
#         if text:
#             file_context += text + "\n"
    
#     return file_context.strip()

# # πŸ›  Function to Format AI Prompts
# # πŸ›  Function to Format AI Prompts
# def format_prompt(system_msg, user_msg, file_context=""):
#     if file_context:
#         system_msg += f" The user has provided a contract document. Use its context to generate insights, but do not repeat or summarize the document itself."
#     return [
#         {"role": "system", "content": system_msg},
#         {"role": "user", "content": user_msg}
#     ]
# # πŸ›  Function to Generate AI Responses
# def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
#     torch.cuda.empty_cache()  # βœ… Clear GPU memory before inference
    
#     model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
    
#     with torch.no_grad():
#         output = model.generate(
#             **model_inputs,
#             max_new_tokens=max_tokens,
#             do_sample=True,
#             top_p=top_p,
#             temperature=temperature,
#             num_return_sequences=1,
#             pad_token_id=tokenizer.eos_token_id
#         )
    
#     return tokenizer.decode(output[0], skip_special_tokens=True)

# # πŸ›  Function to Clean AI Output
# def post_process(text):
#     cleaned = re.sub(r'ζˆ₯+', '', text)  # Remove unwanted symbols
#     lines = cleaned.splitlines()
#     unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
#     return "\n".join(unique_lines)

# # πŸ›  Function to Handle RAG with IBM Granite & Streamlit
# def granite_simple(prompt, file):
#     file_context = read_files(file) if file else ""
    
#     system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
    
#     messages = format_prompt(system_message, prompt, file_context)
#     input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    
#     response = generate_response(input_text)
#     return post_process(response)

# # πŸ”Ή Streamlit UI
# def main():
#     st.set_page_config(page_title="Contract Analysis AI", page_icon="πŸ“œ", layout="wide")

#     st.title("πŸ“œ AI-Powered Contract Analysis Tool")
#     st.write("Upload a contract document (PDF) for a detailed AI-driven legal and technical analysis.")

#     # πŸ”Ή Sidebar Settings
#     with st.sidebar:
#         st.header("βš™οΈ Settings")
#         max_tokens = st.slider("Max Tokens", 50, 1000, 250, 50)
#         top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
#         temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)

#     # πŸ”Ή File Upload Section
#     uploaded_file = st.file_uploader("πŸ“‚ Upload a contract document (PDF)", type="pdf")

#     if uploaded_file is not None:
#         temp_file_path = "temp_uploaded_contract.pdf"
#         with open(temp_file_path, "wb") as f:
#             f.write(uploaded_file.getbuffer())

#         st.success("βœ… File uploaded successfully!")

#         # πŸ”Ή User Input for Analysis
#         user_prompt = "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."

#         # user_prompt = st.text_area(
#         #     "πŸ“ Describe what you want to analyze:",
#         #     "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
#         # )
#         # with st.empty():  # This hides the text area
#         #   user_prompt = st.text_area(
#         #       "πŸ“ Describe what you want to analyze:",
#         #       "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
#         #   )


#         if st.button("πŸ” Analyze Document"):
#             with st.spinner("Analyzing contract document... ⏳"):
#                 final_answer = granite_simple(user_prompt, temp_file_path)

#             # πŸ”Ή Display Analysis Result
#             st.subheader("πŸ“‘ Analysis Result")
#             st.write(final_answer)

#             # πŸ”Ή Remove Temporary File
#             os.remove(temp_file_path)

# # πŸ”₯ Run Streamlit App
# if __name__ == '__main__':
#     main()

!pip install galgebra PyPDF2 tensorflow transformers peft
!pip install -U bitsandbytes
!pip install streamlit chardet


import streamlit as st
import os
import re
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PyPDF2 import PdfReader
from peft import get_peft_model, LoraConfig, TaskType

# βœ… Force CPU execution for Streamlit Cloud
device = torch.device("cpu")

# πŸ”Ή Load IBM Granite Model (CPU-Compatible)
MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"

model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    device_map="cpu",  # Force CPU execution
    torch_dtype=torch.float32  # Use float32 since Streamlit runs on CPU
)

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

# πŸ”Ή Apply LoRA Fine-Tuning Configuration
lora_config = LoraConfig(
    r=8,
    lora_alpha=32,
    target_modules=["q_proj", "v_proj"],
    lora_dropout=0.1,
    bias="none",
    task_type=TaskType.CAUSAL_LM
)
model = get_peft_model(model, lora_config)
model.eval()

# πŸ›  Function to Read & Extract Text from PDFs
def read_files(file):
    file_context = ""
    reader = PdfReader(file)
    
    for page in reader.pages:
        text = page.extract_text()
        if text:
            file_context += text + "\n"
    
    return file_context.strip()

# πŸ›  Function to Format AI Prompts
def format_prompt(system_msg, user_msg, file_context=""):
    if file_context:
        system_msg += f" The user has provided a contract document. Use its context to generate insights, but do not repeat or summarize the document itself."
    return [
        {"role": "system", "content": system_msg},
        {"role": "user", "content": user_msg}
    ]

# πŸ›  Function to Generate AI Responses
def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
    model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
    
    with torch.no_grad():
        output = model.generate(
            **model_inputs,
            max_new_tokens=max_tokens,
            do_sample=True,
            top_p=top_p,
            temperature=temperature,
            num_return_sequences=1,
            pad_token_id=tokenizer.eos_token_id
        )
    
    return tokenizer.decode(output[0], skip_special_tokens=True)

# πŸ›  Function to Clean AI Output
def post_process(text):
    cleaned = re.sub(r'ζˆ₯+', '', text)  # Remove unwanted symbols
    lines = cleaned.splitlines()
    unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
    return "\n".join(unique_lines)

# πŸ›  Function to Handle RAG with IBM Granite & Streamlit
def granite_simple(prompt, file):
    file_context = read_files(file) if file else ""
    
    system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
    
    messages = format_prompt(system_message, prompt, file_context)
    input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    
    response = generate_response(input_text)
    return post_process(response)

# πŸ”Ή Streamlit UI
def main():
    st.set_page_config(page_title="Contract Analysis AI", page_icon="πŸ“œ", layout="wide")

    st.title("πŸ“œ AI-Powered Contract Analysis Tool")
    st.write("Upload a contract document (PDF) for a detailed AI-driven legal and technical analysis.")

    # πŸ”Ή Sidebar Settings
    with st.sidebar:
        st.header("βš™οΈ Settings")
        max_tokens = st.slider("Max Tokens", 50, 1000, 250, 50)
        top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
        temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)

    # πŸ”Ή File Upload Section
    uploaded_file = st.file_uploader("πŸ“‚ Upload a contract document (PDF)", type="pdf")

    if uploaded_file is not None:
        temp_file_path = "temp_uploaded_contract.pdf"
        with open(temp_file_path, "wb") as f:
            f.write(uploaded_file.getbuffer())

        st.success("βœ… File uploaded successfully!")

        # πŸ”Ή User Input for Analysis
        user_prompt = "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."

        if st.button("πŸ” Analyze Document"):
            with st.spinner("Analyzing contract document... ⏳"):
                final_answer = granite_simple(user_prompt, temp_file_path)

            # πŸ”Ή Display Analysis Result
            st.subheader("πŸ“‘ Analysis Result")
            st.write(final_answer)

            # πŸ”Ή Remove Temporary File
            os.remove(temp_file_path)

# πŸ”₯ Run Streamlit App
if __name__ == '__main__':
    main()