Spaces:
Sleeping
Sleeping
File size: 10,951 Bytes
6523d34 e790613 6523d34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# import streamlit as st
# import os
# import re
# import torch
# from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
# from PyPDF2 import PdfReader
# from peft import get_peft_model, LoraConfig, TaskType
# # β
Fix CUDA Memory Fragmentation
# os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
# # πΉ Load IBM Granite Model with 4-bit Quantization
# MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
# quant_config = BitsAndBytesConfig(load_in_4bit=True) # Use 4-bit quantization
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# # β
Ensure model initialization correctly
# torch.cuda.empty_cache() # Clear GPU memory before loading model
# model = AutoModelForCausalLM.from_pretrained(
# MODEL_NAME,
# quantization_config=quant_config,
# device_map="auto", # Auto-assign layers to available GPUs/CPUs
# torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 # Use FP16 if GPU is available
# ).to(device) # Move model to correct device
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# # πΉ Apply LoRA Fine-Tuning Configuration
# lora_config = LoraConfig(
# r=8,
# lora_alpha=32,
# target_modules=["q_proj", "v_proj"],
# lora_dropout=0.1,
# bias="none",
# task_type=TaskType.CAUSAL_LM
# )
# model = get_peft_model(model, lora_config)
# model.eval()
# # π Function to Read & Extract Text from PDFs
# def read_files(file):
# file_context = ""
# reader = PdfReader(file)
# for page in reader.pages:
# text = page.extract_text()
# if text:
# file_context += text + "\n"
# return file_context.strip()
# # π Function to Format AI Prompts
# # π Function to Format AI Prompts
# def format_prompt(system_msg, user_msg, file_context=""):
# if file_context:
# system_msg += f" The user has provided a contract document. Use its context to generate insights, but do not repeat or summarize the document itself."
# return [
# {"role": "system", "content": system_msg},
# {"role": "user", "content": user_msg}
# ]
# # π Function to Generate AI Responses
# def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
# torch.cuda.empty_cache() # β
Clear GPU memory before inference
# model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
# with torch.no_grad():
# output = model.generate(
# **model_inputs,
# max_new_tokens=max_tokens,
# do_sample=True,
# top_p=top_p,
# temperature=temperature,
# num_return_sequences=1,
# pad_token_id=tokenizer.eos_token_id
# )
# return tokenizer.decode(output[0], skip_special_tokens=True)
# # π Function to Clean AI Output
# def post_process(text):
# cleaned = re.sub(r'ζ₯+', '', text) # Remove unwanted symbols
# lines = cleaned.splitlines()
# unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
# return "\n".join(unique_lines)
# # π Function to Handle RAG with IBM Granite & Streamlit
# def granite_simple(prompt, file):
# file_context = read_files(file) if file else ""
# system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
# messages = format_prompt(system_message, prompt, file_context)
# input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# response = generate_response(input_text)
# return post_process(response)
# # πΉ Streamlit UI
# def main():
# st.set_page_config(page_title="Contract Analysis AI", page_icon="π", layout="wide")
# st.title("π AI-Powered Contract Analysis Tool")
# st.write("Upload a contract document (PDF) for a detailed AI-driven legal and technical analysis.")
# # πΉ Sidebar Settings
# with st.sidebar:
# st.header("βοΈ Settings")
# max_tokens = st.slider("Max Tokens", 50, 1000, 250, 50)
# top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
# temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)
# # πΉ File Upload Section
# uploaded_file = st.file_uploader("π Upload a contract document (PDF)", type="pdf")
# if uploaded_file is not None:
# temp_file_path = "temp_uploaded_contract.pdf"
# with open(temp_file_path, "wb") as f:
# f.write(uploaded_file.getbuffer())
# st.success("β
File uploaded successfully!")
# # πΉ User Input for Analysis
# user_prompt = "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
# # user_prompt = st.text_area(
# # "π Describe what you want to analyze:",
# # "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
# # )
# # with st.empty(): # This hides the text area
# # user_prompt = st.text_area(
# # "π Describe what you want to analyze:",
# # "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
# # )
# if st.button("π Analyze Document"):
# with st.spinner("Analyzing contract document... β³"):
# final_answer = granite_simple(user_prompt, temp_file_path)
# # πΉ Display Analysis Result
# st.subheader("π Analysis Result")
# st.write(final_answer)
# # πΉ Remove Temporary File
# os.remove(temp_file_path)
# # π₯ Run Streamlit App
# if __name__ == '__main__':
# main()
!pip install galgebra PyPDF2 tensorflow transformers peft
!pip install -U bitsandbytes
!pip install streamlit chardet
import streamlit as st
import os
import re
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PyPDF2 import PdfReader
from peft import get_peft_model, LoraConfig, TaskType
# β
Force CPU execution for Streamlit Cloud
device = torch.device("cpu")
# πΉ Load IBM Granite Model (CPU-Compatible)
MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map="cpu", # Force CPU execution
torch_dtype=torch.float32 # Use float32 since Streamlit runs on CPU
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# πΉ Apply LoRA Fine-Tuning Configuration
lora_config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.1,
bias="none",
task_type=TaskType.CAUSAL_LM
)
model = get_peft_model(model, lora_config)
model.eval()
# π Function to Read & Extract Text from PDFs
def read_files(file):
file_context = ""
reader = PdfReader(file)
for page in reader.pages:
text = page.extract_text()
if text:
file_context += text + "\n"
return file_context.strip()
# π Function to Format AI Prompts
def format_prompt(system_msg, user_msg, file_context=""):
if file_context:
system_msg += f" The user has provided a contract document. Use its context to generate insights, but do not repeat or summarize the document itself."
return [
{"role": "system", "content": system_msg},
{"role": "user", "content": user_msg}
]
# π Function to Generate AI Responses
def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
with torch.no_grad():
output = model.generate(
**model_inputs,
max_new_tokens=max_tokens,
do_sample=True,
top_p=top_p,
temperature=temperature,
num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id
)
return tokenizer.decode(output[0], skip_special_tokens=True)
# π Function to Clean AI Output
def post_process(text):
cleaned = re.sub(r'ζ₯+', '', text) # Remove unwanted symbols
lines = cleaned.splitlines()
unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
return "\n".join(unique_lines)
# π Function to Handle RAG with IBM Granite & Streamlit
def granite_simple(prompt, file):
file_context = read_files(file) if file else ""
system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
messages = format_prompt(system_message, prompt, file_context)
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
response = generate_response(input_text)
return post_process(response)
# πΉ Streamlit UI
def main():
st.set_page_config(page_title="Contract Analysis AI", page_icon="π", layout="wide")
st.title("π AI-Powered Contract Analysis Tool")
st.write("Upload a contract document (PDF) for a detailed AI-driven legal and technical analysis.")
# πΉ Sidebar Settings
with st.sidebar:
st.header("βοΈ Settings")
max_tokens = st.slider("Max Tokens", 50, 1000, 250, 50)
top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)
# πΉ File Upload Section
uploaded_file = st.file_uploader("π Upload a contract document (PDF)", type="pdf")
if uploaded_file is not None:
temp_file_path = "temp_uploaded_contract.pdf"
with open(temp_file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.success("β
File uploaded successfully!")
# πΉ User Input for Analysis
user_prompt = "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
if st.button("π Analyze Document"):
with st.spinner("Analyzing contract document... β³"):
final_answer = granite_simple(user_prompt, temp_file_path)
# πΉ Display Analysis Result
st.subheader("π Analysis Result")
st.write(final_answer)
# πΉ Remove Temporary File
os.remove(temp_file_path)
# π₯ Run Streamlit App
if __name__ == '__main__':
main() |