TabasumDev commited on
Commit
6523d34
Β·
verified Β·
1 Parent(s): a4f5304

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +286 -0
app.py ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import streamlit as st
2
+ # import os
3
+ # import re
4
+ # import torch
5
+ # from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
6
+ # from PyPDF2 import PdfReader
7
+ # from peft import get_peft_model, LoraConfig, TaskType
8
+
9
+ # # βœ… Fix CUDA Memory Fragmentation
10
+ # os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
11
+
12
+ # # πŸ”Ή Load IBM Granite Model with 4-bit Quantization
13
+ # MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
14
+ # quant_config = BitsAndBytesConfig(load_in_4bit=True) # Use 4-bit quantization
15
+
16
+ # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
17
+
18
+ # # βœ… Ensure model initialization correctly
19
+ # torch.cuda.empty_cache() # Clear GPU memory before loading model
20
+
21
+ # model = AutoModelForCausalLM.from_pretrained(
22
+ # MODEL_NAME,
23
+ # quantization_config=quant_config,
24
+ # device_map="auto", # Auto-assign layers to available GPUs/CPUs
25
+ # torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 # Use FP16 if GPU is available
26
+ # ).to(device) # Move model to correct device
27
+
28
+ # tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
29
+
30
+ # # πŸ”Ή Apply LoRA Fine-Tuning Configuration
31
+ # lora_config = LoraConfig(
32
+ # r=8,
33
+ # lora_alpha=32,
34
+ # target_modules=["q_proj", "v_proj"],
35
+ # lora_dropout=0.1,
36
+ # bias="none",
37
+ # task_type=TaskType.CAUSAL_LM
38
+ # )
39
+ # model = get_peft_model(model, lora_config)
40
+ # model.eval()
41
+
42
+ # # πŸ›  Function to Read & Extract Text from PDFs
43
+ # def read_files(file):
44
+ # file_context = ""
45
+ # reader = PdfReader(file)
46
+
47
+ # for page in reader.pages:
48
+ # text = page.extract_text()
49
+ # if text:
50
+ # file_context += text + "\n"
51
+
52
+ # return file_context.strip()
53
+
54
+ # # πŸ›  Function to Format AI Prompts
55
+ # # πŸ›  Function to Format AI Prompts
56
+ # def format_prompt(system_msg, user_msg, file_context=""):
57
+ # if file_context:
58
+ # system_msg += f" The user has provided a contract document. Use its context to generate insights, but do not repeat or summarize the document itself."
59
+ # return [
60
+ # {"role": "system", "content": system_msg},
61
+ # {"role": "user", "content": user_msg}
62
+ # ]
63
+ # # πŸ›  Function to Generate AI Responses
64
+ # def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
65
+ # torch.cuda.empty_cache() # βœ… Clear GPU memory before inference
66
+
67
+ # model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
68
+
69
+ # with torch.no_grad():
70
+ # output = model.generate(
71
+ # **model_inputs,
72
+ # max_new_tokens=max_tokens,
73
+ # do_sample=True,
74
+ # top_p=top_p,
75
+ # temperature=temperature,
76
+ # num_return_sequences=1,
77
+ # pad_token_id=tokenizer.eos_token_id
78
+ # )
79
+
80
+ # return tokenizer.decode(output[0], skip_special_tokens=True)
81
+
82
+ # # πŸ›  Function to Clean AI Output
83
+ # def post_process(text):
84
+ # cleaned = re.sub(r'ζˆ₯+', '', text) # Remove unwanted symbols
85
+ # lines = cleaned.splitlines()
86
+ # unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
87
+ # return "\n".join(unique_lines)
88
+
89
+ # # πŸ›  Function to Handle RAG with IBM Granite & Streamlit
90
+ # def granite_simple(prompt, file):
91
+ # file_context = read_files(file) if file else ""
92
+
93
+ # system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
94
+
95
+ # messages = format_prompt(system_message, prompt, file_context)
96
+ # input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
97
+
98
+ # response = generate_response(input_text)
99
+ # return post_process(response)
100
+
101
+ # # πŸ”Ή Streamlit UI
102
+ # def main():
103
+ # st.set_page_config(page_title="Contract Analysis AI", page_icon="πŸ“œ", layout="wide")
104
+
105
+ # st.title("πŸ“œ AI-Powered Contract Analysis Tool")
106
+ # st.write("Upload a contract document (PDF) for a detailed AI-driven legal and technical analysis.")
107
+
108
+ # # πŸ”Ή Sidebar Settings
109
+ # with st.sidebar:
110
+ # st.header("βš™οΈ Settings")
111
+ # max_tokens = st.slider("Max Tokens", 50, 1000, 250, 50)
112
+ # top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
113
+ # temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)
114
+
115
+ # # πŸ”Ή File Upload Section
116
+ # uploaded_file = st.file_uploader("πŸ“‚ Upload a contract document (PDF)", type="pdf")
117
+
118
+ # if uploaded_file is not None:
119
+ # temp_file_path = "temp_uploaded_contract.pdf"
120
+ # with open(temp_file_path, "wb") as f:
121
+ # f.write(uploaded_file.getbuffer())
122
+
123
+ # st.success("βœ… File uploaded successfully!")
124
+
125
+ # # πŸ”Ή User Input for Analysis
126
+ # user_prompt = "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
127
+
128
+ # # user_prompt = st.text_area(
129
+ # # "πŸ“ Describe what you want to analyze:",
130
+ # # "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
131
+ # # )
132
+ # # with st.empty(): # This hides the text area
133
+ # # user_prompt = st.text_area(
134
+ # # "πŸ“ Describe what you want to analyze:",
135
+ # # "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
136
+ # # )
137
+
138
+
139
+ # if st.button("πŸ” Analyze Document"):
140
+ # with st.spinner("Analyzing contract document... ⏳"):
141
+ # final_answer = granite_simple(user_prompt, temp_file_path)
142
+
143
+ # # πŸ”Ή Display Analysis Result
144
+ # st.subheader("πŸ“‘ Analysis Result")
145
+ # st.write(final_answer)
146
+
147
+ # # πŸ”Ή Remove Temporary File
148
+ # os.remove(temp_file_path)
149
+
150
+ # # πŸ”₯ Run Streamlit App
151
+ # if __name__ == '__main__':
152
+ # main()
153
+
154
+
155
+ import streamlit as st
156
+ import os
157
+ import re
158
+ import torch
159
+ from transformers import AutoModelForCausalLM, AutoTokenizer
160
+ from PyPDF2 import PdfReader
161
+ from peft import get_peft_model, LoraConfig, TaskType
162
+
163
+ # βœ… Force CPU execution for Streamlit Cloud
164
+ device = torch.device("cpu")
165
+
166
+ # πŸ”Ή Load IBM Granite Model (CPU-Compatible)
167
+ MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
168
+
169
+ model = AutoModelForCausalLM.from_pretrained(
170
+ MODEL_NAME,
171
+ device_map="cpu", # Force CPU execution
172
+ torch_dtype=torch.float32 # Use float32 since Streamlit runs on CPU
173
+ )
174
+
175
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
176
+
177
+ # πŸ”Ή Apply LoRA Fine-Tuning Configuration
178
+ lora_config = LoraConfig(
179
+ r=8,
180
+ lora_alpha=32,
181
+ target_modules=["q_proj", "v_proj"],
182
+ lora_dropout=0.1,
183
+ bias="none",
184
+ task_type=TaskType.CAUSAL_LM
185
+ )
186
+ model = get_peft_model(model, lora_config)
187
+ model.eval()
188
+
189
+ # πŸ›  Function to Read & Extract Text from PDFs
190
+ def read_files(file):
191
+ file_context = ""
192
+ reader = PdfReader(file)
193
+
194
+ for page in reader.pages:
195
+ text = page.extract_text()
196
+ if text:
197
+ file_context += text + "\n"
198
+
199
+ return file_context.strip()
200
+
201
+ # πŸ›  Function to Format AI Prompts
202
+ def format_prompt(system_msg, user_msg, file_context=""):
203
+ if file_context:
204
+ system_msg += f" The user has provided a contract document. Use its context to generate insights, but do not repeat or summarize the document itself."
205
+ return [
206
+ {"role": "system", "content": system_msg},
207
+ {"role": "user", "content": user_msg}
208
+ ]
209
+
210
+ # πŸ›  Function to Generate AI Responses
211
+ def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
212
+ model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
213
+
214
+ with torch.no_grad():
215
+ output = model.generate(
216
+ **model_inputs,
217
+ max_new_tokens=max_tokens,
218
+ do_sample=True,
219
+ top_p=top_p,
220
+ temperature=temperature,
221
+ num_return_sequences=1,
222
+ pad_token_id=tokenizer.eos_token_id
223
+ )
224
+
225
+ return tokenizer.decode(output[0], skip_special_tokens=True)
226
+
227
+ # πŸ›  Function to Clean AI Output
228
+ def post_process(text):
229
+ cleaned = re.sub(r'ζˆ₯+', '', text) # Remove unwanted symbols
230
+ lines = cleaned.splitlines()
231
+ unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
232
+ return "\n".join(unique_lines)
233
+
234
+ # πŸ›  Function to Handle RAG with IBM Granite & Streamlit
235
+ def granite_simple(prompt, file):
236
+ file_context = read_files(file) if file else ""
237
+
238
+ system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
239
+
240
+ messages = format_prompt(system_message, prompt, file_context)
241
+ input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
242
+
243
+ response = generate_response(input_text)
244
+ return post_process(response)
245
+
246
+ # πŸ”Ή Streamlit UI
247
+ def main():
248
+ st.set_page_config(page_title="Contract Analysis AI", page_icon="πŸ“œ", layout="wide")
249
+
250
+ st.title("πŸ“œ AI-Powered Contract Analysis Tool")
251
+ st.write("Upload a contract document (PDF) for a detailed AI-driven legal and technical analysis.")
252
+
253
+ # πŸ”Ή Sidebar Settings
254
+ with st.sidebar:
255
+ st.header("βš™οΈ Settings")
256
+ max_tokens = st.slider("Max Tokens", 50, 1000, 250, 50)
257
+ top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
258
+ temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)
259
+
260
+ # πŸ”Ή File Upload Section
261
+ uploaded_file = st.file_uploader("πŸ“‚ Upload a contract document (PDF)", type="pdf")
262
+
263
+ if uploaded_file is not None:
264
+ temp_file_path = "temp_uploaded_contract.pdf"
265
+ with open(temp_file_path, "wb") as f:
266
+ f.write(uploaded_file.getbuffer())
267
+
268
+ st.success("βœ… File uploaded successfully!")
269
+
270
+ # πŸ”Ή User Input for Analysis
271
+ user_prompt = "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
272
+
273
+ if st.button("πŸ” Analyze Document"):
274
+ with st.spinner("Analyzing contract document... ⏳"):
275
+ final_answer = granite_simple(user_prompt, temp_file_path)
276
+
277
+ # πŸ”Ή Display Analysis Result
278
+ st.subheader("πŸ“‘ Analysis Result")
279
+ st.write(final_answer)
280
+
281
+ # πŸ”Ή Remove Temporary File
282
+ os.remove(temp_file_path)
283
+
284
+ # πŸ”₯ Run Streamlit App
285
+ if __name__ == '__main__':
286
+ main()