TKM03 commited on
Commit
d744498
·
verified ·
1 Parent(s): ff41b45

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -10
app.py CHANGED
@@ -9,11 +9,11 @@ logging.basicConfig(level=logging.INFO)
9
  logger = logging.getLogger(__name__)
10
 
11
  # Load the model and processor from Hugging Face
12
- model = ViTForImageClassification.from_pretrained("dima806/deepfake_vs_real_image_detection")
13
- processor = ViTImageProcessor.from_pretrained("dima806/deepfake_vs_real_image_detection")
14
 
15
- def detect(image, confidence_threshold=0.7):
16
- """Detect deepfake content in an image using dima806/deepfake_vs_real_image_detection"""
17
  if image is None:
18
  raise gr.Error("Please upload an image to analyze")
19
 
@@ -21,7 +21,7 @@ def detect(image, confidence_threshold=0.7):
21
  # Convert Gradio image (filepath) to PIL Image
22
  pil_image = Image.open(image).convert("RGB")
23
 
24
- # Ensure image meets ViT's expected size (224x224)
25
  pil_image = pil_image.resize((224, 224), Image.Resampling.LANCZOS)
26
 
27
  # Preprocess the image
@@ -97,17 +97,18 @@ MARKDOWN0 = """
97
  <div class="header">
98
  <h1>DeepFake Detection System</h1>
99
  <p>Advanced AI-powered analysis for identifying manipulated media<br>
100
- Powered by dima806/deepfake_vs_real_image_detection model<br>
101
- Note: Accuracy may vary with recent deepfakes due to training data age</p>
102
  </div>
103
  """
104
 
105
- # Create Gradio interface
106
  with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
107
  gr.Markdown(MARKDOWN0)
108
  with gr.Row(elem_classes="container"):
109
  with gr.Column(scale=1):
110
  image = gr.Image(type='filepath', height=400, label="Upload Image")
 
111
  detect_button = gr.Button("Analyze Image", elem_classes="button-gradient")
112
  with gr.Column(scale=2):
113
  overall = gr.Label(label="Confidence Score")
@@ -116,11 +117,11 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
116
 
117
  detect_button.click(
118
  fn=detect,
119
- inputs=[image],
120
  outputs=[overall, aigen, deepfake]
121
  )
122
 
123
  # Launch the application
124
  demo.launch(
125
  debug=True
126
- )
 
9
  logger = logging.getLogger(__name__)
10
 
11
  # Load the model and processor from Hugging Face
12
+ model = ViTForImageClassification.from_pretrained("prithivMLmods/Deep-Fake-Detector-Model")
13
+ processor = ViTImageProcessor.from_pretrained("prithivMLmods/Deep-Fake-Detector-Model")
14
 
15
+ def detect(image, confidence_threshold=0.5):
16
+ """Detect deepfake content using prithivMLmods/Deep-Fake-Detector-Model"""
17
  if image is None:
18
  raise gr.Error("Please upload an image to analyze")
19
 
 
21
  # Convert Gradio image (filepath) to PIL Image
22
  pil_image = Image.open(image).convert("RGB")
23
 
24
+ # Resize to match ViT input requirements (224x224)
25
  pil_image = pil_image.resize((224, 224), Image.Resampling.LANCZOS)
26
 
27
  # Preprocess the image
 
97
  <div class="header">
98
  <h1>DeepFake Detection System</h1>
99
  <p>Advanced AI-powered analysis for identifying manipulated media<br>
100
+ Powered by prithivMLmods/Deep-Fake-Detector-Model (Updated Jan 2025)<br>
101
+ Adjustable threshold for tuning detection sensitivity</p>
102
  </div>
103
  """
104
 
105
+ # Create Gradio interface with threshold slider
106
  with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
107
  gr.Markdown(MARKDOWN0)
108
  with gr.Row(elem_classes="container"):
109
  with gr.Column(scale=1):
110
  image = gr.Image(type='filepath', height=400, label="Upload Image")
111
+ threshold = gr.Slider(0, 1, value=0.5, step=0.01, label="Confidence Threshold (Fake)")
112
  detect_button = gr.Button("Analyze Image", elem_classes="button-gradient")
113
  with gr.Column(scale=2):
114
  overall = gr.Label(label="Confidence Score")
 
117
 
118
  detect_button.click(
119
  fn=detect,
120
+ inputs=[image, threshold],
121
  outputs=[overall, aigen, deepfake]
122
  )
123
 
124
  # Launch the application
125
  demo.launch(
126
  debug=True
127
+ )