Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,17 @@ import gradio as gr
|
|
2 |
from transformers import ViTForImageClassification, ViTImageProcessor
|
3 |
from PIL import Image
|
4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Load the model and processor from Hugging Face
|
7 |
model = ViTForImageClassification.from_pretrained("dima806/deepfake_vs_real_image_detection")
|
8 |
processor = ViTImageProcessor.from_pretrained("dima806/deepfake_vs_real_image_detection")
|
9 |
|
10 |
-
def detect(image):
|
11 |
"""Detect deepfake content in an image using dima806/deepfake_vs_real_image_detection"""
|
12 |
if image is None:
|
13 |
raise gr.Error("Please upload an image to analyze")
|
@@ -16,6 +21,9 @@ def detect(image):
|
|
16 |
# Convert Gradio image (filepath) to PIL Image
|
17 |
pil_image = Image.open(image).convert("RGB")
|
18 |
|
|
|
|
|
|
|
19 |
# Preprocess the image
|
20 |
inputs = processor(images=pil_image, return_tensors="pt")
|
21 |
|
@@ -23,27 +31,31 @@ def detect(image):
|
|
23 |
with torch.no_grad():
|
24 |
outputs = model(**inputs)
|
25 |
logits = outputs.logits
|
26 |
-
|
27 |
|
28 |
# Get confidence scores
|
29 |
-
probabilities = torch.softmax(logits, dim=1)[0]
|
30 |
confidence_real = probabilities[0].item() * 100
|
31 |
confidence_fake = probabilities[1].item() * 100
|
32 |
|
33 |
-
#
|
34 |
-
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Prepare output
|
37 |
-
overall = f"{
|
38 |
aigen = f"{confidence_fake:.1f}% (AI-Generated Content Likelihood)"
|
39 |
deepfake = f"{confidence_fake:.1f}% (Face Manipulation Likelihood)"
|
40 |
|
41 |
return overall, aigen, deepfake
|
42 |
|
43 |
except Exception as e:
|
|
|
44 |
raise gr.Error(f"Analysis error: {str(e)}")
|
45 |
|
46 |
-
# Custom CSS (unchanged
|
47 |
custom_css = """
|
48 |
.container {
|
49 |
max-width: 1200px;
|
@@ -85,7 +97,8 @@ MARKDOWN0 = """
|
|
85 |
<div class="header">
|
86 |
<h1>DeepFake Detection System</h1>
|
87 |
<p>Advanced AI-powered analysis for identifying manipulated media<br>
|
88 |
-
Powered by dima806/deepfake_vs_real_image_detection model
|
|
|
89 |
</div>
|
90 |
"""
|
91 |
|
|
|
2 |
from transformers import ViTForImageClassification, ViTImageProcessor
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
+
import logging
|
6 |
+
|
7 |
+
# Set up logging
|
8 |
+
logging.basicConfig(level=logging.INFO)
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
|
11 |
# Load the model and processor from Hugging Face
|
12 |
model = ViTForImageClassification.from_pretrained("dima806/deepfake_vs_real_image_detection")
|
13 |
processor = ViTImageProcessor.from_pretrained("dima806/deepfake_vs_real_image_detection")
|
14 |
|
15 |
+
def detect(image, confidence_threshold=0.7):
|
16 |
"""Detect deepfake content in an image using dima806/deepfake_vs_real_image_detection"""
|
17 |
if image is None:
|
18 |
raise gr.Error("Please upload an image to analyze")
|
|
|
21 |
# Convert Gradio image (filepath) to PIL Image
|
22 |
pil_image = Image.open(image).convert("RGB")
|
23 |
|
24 |
+
# Ensure image meets ViT's expected size (224x224)
|
25 |
+
pil_image = pil_image.resize((224, 224), Image.Resampling.LANCZOS)
|
26 |
+
|
27 |
# Preprocess the image
|
28 |
inputs = processor(images=pil_image, return_tensors="pt")
|
29 |
|
|
|
31 |
with torch.no_grad():
|
32 |
outputs = model(**inputs)
|
33 |
logits = outputs.logits
|
34 |
+
probabilities = torch.softmax(logits, dim=1)[0]
|
35 |
|
36 |
# Get confidence scores
|
|
|
37 |
confidence_real = probabilities[0].item() * 100
|
38 |
confidence_fake = probabilities[1].item() * 100
|
39 |
|
40 |
+
# Determine prediction based on threshold
|
41 |
+
predicted_label = "Fake" if confidence_fake / 100 >= confidence_threshold else "Real"
|
42 |
+
confidence_score = max(confidence_real, confidence_fake)
|
43 |
+
|
44 |
+
# Log the prediction
|
45 |
+
logger.info(f"Real: {confidence_real:.1f}%, Fake: {confidence_fake:.1f}%, Predicted: {predicted_label}")
|
46 |
|
47 |
# Prepare output
|
48 |
+
overall = f"{confidence_score:.1f}% Confidence ({predicted_label})"
|
49 |
aigen = f"{confidence_fake:.1f}% (AI-Generated Content Likelihood)"
|
50 |
deepfake = f"{confidence_fake:.1f}% (Face Manipulation Likelihood)"
|
51 |
|
52 |
return overall, aigen, deepfake
|
53 |
|
54 |
except Exception as e:
|
55 |
+
logger.error(f"Error during analysis: {str(e)}")
|
56 |
raise gr.Error(f"Analysis error: {str(e)}")
|
57 |
|
58 |
+
# Custom CSS (unchanged)
|
59 |
custom_css = """
|
60 |
.container {
|
61 |
max-width: 1200px;
|
|
|
97 |
<div class="header">
|
98 |
<h1>DeepFake Detection System</h1>
|
99 |
<p>Advanced AI-powered analysis for identifying manipulated media<br>
|
100 |
+
Powered by dima806/deepfake_vs_real_image_detection model<br>
|
101 |
+
Note: Accuracy may vary with recent deepfakes due to training data age</p>
|
102 |
</div>
|
103 |
"""
|
104 |
|