TKM03 commited on
Commit
6098ec9
·
verified ·
1 Parent(s): d744498

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -8
app.py CHANGED
@@ -12,6 +12,9 @@ logger = logging.getLogger(__name__)
12
  model = ViTForImageClassification.from_pretrained("prithivMLmods/Deep-Fake-Detector-Model")
13
  processor = ViTImageProcessor.from_pretrained("prithivMLmods/Deep-Fake-Detector-Model")
14
 
 
 
 
15
  def detect(image, confidence_threshold=0.5):
16
  """Detect deepfake content using prithivMLmods/Deep-Fake-Detector-Model"""
17
  if image is None:
@@ -34,18 +37,26 @@ def detect(image, confidence_threshold=0.5):
34
  probabilities = torch.softmax(logits, dim=1)[0]
35
 
36
  # Get confidence scores
37
- confidence_real = probabilities[0].item() * 100
38
- confidence_fake = probabilities[1].item() * 100
 
 
 
 
 
39
 
40
- # Determine prediction based on threshold
41
- predicted_label = "Fake" if confidence_fake / 100 >= confidence_threshold else "Real"
42
  confidence_score = max(confidence_real, confidence_fake)
43
 
44
- # Log the prediction
45
- logger.info(f"Real: {confidence_real:.1f}%, Fake: {confidence_fake:.1f}%, Predicted: {predicted_label}")
 
 
 
46
 
47
  # Prepare output
48
- overall = f"{confidence_score:.1f}% Confidence ({predicted_label})"
49
  aigen = f"{confidence_fake:.1f}% (AI-Generated Content Likelihood)"
50
  deepfake = f"{confidence_fake:.1f}% (Face Manipulation Likelihood)"
51
 
@@ -98,7 +109,7 @@ MARKDOWN0 = """
98
  <h1>DeepFake Detection System</h1>
99
  <p>Advanced AI-powered analysis for identifying manipulated media<br>
100
  Powered by prithivMLmods/Deep-Fake-Detector-Model (Updated Jan 2025)<br>
101
- Adjustable threshold for tuning detection sensitivity</p>
102
  </div>
103
  """
104
 
 
12
  model = ViTForImageClassification.from_pretrained("prithivMLmods/Deep-Fake-Detector-Model")
13
  processor = ViTImageProcessor.from_pretrained("prithivMLmods/Deep-Fake-Detector-Model")
14
 
15
+ # Log model configuration to verify label mapping
16
+ logger.info(f"Model label mapping: {model.config.id2label}")
17
+
18
  def detect(image, confidence_threshold=0.5):
19
  """Detect deepfake content using prithivMLmods/Deep-Fake-Detector-Model"""
20
  if image is None:
 
37
  probabilities = torch.softmax(logits, dim=1)[0]
38
 
39
  # Get confidence scores
40
+ confidence_real = probabilities[0].item() * 100 # Assuming 0 is Real
41
+ confidence_fake = probabilities[1].item() * 100 # Assuming 1 is Fake
42
+
43
+ # Verify label mapping from model config
44
+ id2label = model.config.id2label
45
+ predicted_class = torch.argmax(logits, dim=1).item()
46
+ predicted_label = id2label[predicted_class]
47
 
48
+ # Adjust prediction based on threshold and label
49
+ threshold_predicted = "Fake" if confidence_fake / 100 >= confidence_threshold else "Real"
50
  confidence_score = max(confidence_real, confidence_fake)
51
 
52
+ # Log detailed output
53
+ logger.info(f"Logits: {logits.tolist()}")
54
+ logger.info(f"Probabilities - Real: {confidence_real:.1f}%, Fake: {confidence_fake:.1f}%")
55
+ logger.info(f"Predicted Class: {predicted_class}, Label: {predicted_label}")
56
+ logger.info(f"Threshold ({confidence_threshold}): {threshold_predicted}")
57
 
58
  # Prepare output
59
+ overall = f"{confidence_score:.1f}% Confidence ({threshold_predicted})"
60
  aigen = f"{confidence_fake:.1f}% (AI-Generated Content Likelihood)"
61
  deepfake = f"{confidence_fake:.1f}% (Face Manipulation Likelihood)"
62
 
 
109
  <h1>DeepFake Detection System</h1>
110
  <p>Advanced AI-powered analysis for identifying manipulated media<br>
111
  Powered by prithivMLmods/Deep-Fake-Detector-Model (Updated Jan 2025)<br>
112
+ Adjust threshold to tune sensitivity; check logs for detailed output</p>
113
  </div>
114
  """
115