Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from threading import Thread | |
from typing import Iterator | |
import spaces | |
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
if torch.cuda.is_available(): | |
model_id = "TIGER-Lab/MAmmoTH2-8B-Plus" | |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
system_prompt: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.7, | |
top_p: float = 1.0, | |
repetition_penalty: float = 1.1, | |
input_button: bool = False | |
) -> Iterator[str]: | |
conversation = [] | |
if system_prompt: | |
conversation.append({"role": "system", "content": system_prompt}) | |
for user, assistant in chat_history: | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
outputs = [] | |
with torch.no_grad(): | |
model_outputs = model.generate(**generate_kwargs) | |
for text in streamer.generate_from_iterator(model_outputs): | |
outputs.append(text) | |
yield "".join(outputs) | |
chat_interface = gr.Interface( | |
fn=generate, | |
inputs=[ | |
gr.Textbox(label="User Input", lines=5, placeholder="Enter your message..."), | |
gr.Textbox(label="System Prompt", lines=5, placeholder="Enter system prompt (optional)..."), | |
gr.Slider( | |
label="Max New Tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0.01, | |
maximum=1.0, | |
step=0.01, | |
value=0.7, | |
), | |
gr.Slider( | |
label="Top-p (Nucleus Sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.01, | |
value=1.0, | |
), | |
gr.Slider( | |
label="Repetition Penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.1, | |
), | |
gr.Button("Generate Response") | |
], | |
outputs=gr.Textbox(label="Chat Output", lines=10), | |
title="🦣MAmmoTH2", | |
description="A simple web interactive chat demo based on gradio.", | |
examples=[ | |
["Hello there! How are you doing?"], | |
["Can you explain briefly to me what is the Python programming language?"], | |
["Explain the plot of Cinderella in a sentence."], | |
["How many hours does it take a man to eat a helicopter?"], | |
["Write a 100-word article on 'Benefits of Open-Source in AI research'"], | |
], | |
theme="default", | |
live=True, | |
) | |
chat_interface.launch() |