Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,704 Bytes
2560819 c70e3e3 d0f1436 2560819 0230280 2560819 f382665 2560819 30dc26e 2560819 f382665 d0f1436 30dc26e 2560819 30dc26e 2560819 30dc26e 2560819 56386d0 2560819 56386d0 2560819 30dc26e 2560819 56386d0 2560819 30dc26e 2560819 56386d0 2560819 48548d0 2560819 30dc26e 2560819 30dc26e 2560819 7e9f4ee 30dc26e 2560819 d0f1436 7e9f4ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import os
from threading import Thread
from typing import Iterator
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
if torch.cuda.is_available():
model_id = "TIGER-Lab/MAmmoTH2-8B-Plus"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.7,
top_p: float = 1.0,
repetition_penalty: float = 1.1,
input_button: bool = False
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
outputs = []
with torch.no_grad():
model_outputs = model.generate(**generate_kwargs)
for text in streamer.generate_from_iterator(model_outputs):
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.Interface(
fn=generate,
inputs=[
gr.Textbox(label="User Input", lines=5, placeholder="Enter your message..."),
gr.Textbox(label="System Prompt", lines=5, placeholder="Enter system prompt (optional)..."),
gr.Slider(
label="Max New Tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.01,
maximum=1.0,
step=0.01,
value=0.7,
),
gr.Slider(
label="Top-p (Nucleus Sampling)",
minimum=0.05,
maximum=1.0,
step=0.01,
value=1.0,
),
gr.Slider(
label="Repetition Penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.1,
),
gr.Button("Generate Response")
],
outputs=gr.Textbox(label="Chat Output", lines=10),
title="🦣MAmmoTH2",
description="A simple web interactive chat demo based on gradio.",
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
theme="default",
live=True,
)
chat_interface.launch() |