SyedHutter's picture
Updated with Content msg, product recommendation and history information4
7078460 verified
raw
history blame
8.9 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Dict, Any
from pymongo import MongoClient
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import spacy
import os
import logging
import re
import torch
import random # For response variety
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
app = FastAPI()
# MongoDB Setup
connection_string = os.getenv("MONGO_URI", "mongodb+srv://clician:[email protected]/?retryWrites=true&w=majority&appName=Hutterdev")
client = MongoClient(connection_string)
db = client["test"]
products_collection = db["products"]
# BlenderBot Setup
model_repo = "SyedHutter/blenderbot_model"
model_subfolder = "blenderbot_model"
model_dir = "/home/user/app/blenderbot_model"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
if not os.path.exists(model_dir):
logger.info(f"Downloading {model_repo}/{model_subfolder} to {model_dir}...")
tokenizer = BlenderbotTokenizer.from_pretrained(model_repo, subfolder=model_subfolder)
model = BlenderbotForConditionalGeneration.from_pretrained(model_repo, subfolder=model_subfolder)
os.makedirs(model_dir, exist_ok=True)
tokenizer.save_pretrained(model_dir)
model.save_pretrained(model_dir)
logger.info("Model download complete.")
else:
logger.info(f"Loading pre-existing model from {model_dir}.")
tokenizer = BlenderbotTokenizer.from_pretrained(model_dir)
model = BlenderbotForConditionalGeneration.from_pretrained(model_dir).to(device)
model.eval()
# Static Context
context_msg = "I am Hutter, your shopping guide for Hutter Products GmbH, here to help you find sustainable products."
# spaCy Setup
spacy_model_path = "/home/user/app/en_core_web_sm-3.8.0"
nlp = spacy.load(spacy_model_path)
# Pydantic Models
class PromptRequest(BaseModel):
input_text: str
conversation_history: List[str] = []
class CombinedResponse(BaseModel):
ner: Dict[str, Any]
qa: Dict[str, Any]
products_matched: List[Dict[str, Any]]
# Helper Functions
def extract_keywords(text: str) -> List[str]:
doc = nlp(text)
keywords = [token.text for token in doc if token.pos_ in ["NOUN", "PROPN"]]
return list(set(keywords))
def detect_intent(text: str) -> str:
doc = nlp(text.lower())
text_lower = text.lower()
if any(token.text in ["buy", "shop", "find", "recommend", "product", "products", "item", "store", "catalog"] for token in doc) or "what" in text_lower.split()[:2]:
return "recommend_product"
elif any(token.text in ["company", "who", "do"] for token in doc):
return "company_info"
elif "name" in text_lower or "yourself" in text_lower or "you" in doc and "about" in doc:
return "ask_name"
elif re.search(r"\d+\s*[\+\-\*/]\s*\d+", text_lower):
return "math_query"
return "chat" # New fallback for general conversation
def search_products_by_keywords(keywords: List[str]) -> List[Dict[str, Any]]:
if not keywords:
return []
query = {"$or": [{"name": {"$regex": f"\\b{keyword}\\b", "$options": "i"}} for keyword in keywords]}
matched_products = [
{
"id": str(p["_id"]),
"name": p.get("name", "Unknown"),
"skuNumber": p.get("skuNumber", "N/A"),
"description": p.get("description", "No description available")
}
for p in products_collection.find(query)
]
return matched_products
def get_product_context(products: List[Dict]) -> str:
if not products:
return ""
product_str = "Products: " + ", ".join([f"'{p['name']}' - {p['description']}" for p in products[:2]])
return product_str
def format_response(response: str, products: List[Dict], intent: str, input_text: str, history: List[str]) -> str:
no_product_prompts = [
"I’d love to recommend something! What are you looking for in our sustainable catalog?",
"Our sustainable catalog has lots to offer—what catches your interest?",
"Tell me what you’re after, and I’ll find something great from our eco-friendly range!"
]
if intent == "recommend_product":
if not products:
return random.choice(no_product_prompts)
product = products[0]
return f"Check out our '{product['name']}'—it’s {product['description'].lower()}. Want more options?"
elif intent == "company_info":
return "Hutter Products GmbH offers sustainable products like recycled textiles and ocean plastic goods."
elif intent == "ask_name":
return "I’m Hutter, your shopping guide for Hutter Products GmbH. I’m here to help you find eco-friendly products—how can I assist?"
elif intent == "math_query":
match = re.search(r"(\d+)\s*([\+\-\*/])\s*(\d+)", input_text.lower())
if match:
num1, op, num2 = int(match.group(1)), match.group(2), int(match.group(3))
if op == "+": return f"{num1} + {num2} = {num1 + num2}. Need shopping help?"
elif op == "-": return f"{num1} - {num2} = {num1 - num2}. Anything else?"
elif op == "*": return f"{num1} * {num2} = {num1 * num2}. Explore our products?"
elif op == "/": return f"{num1} / {num2} = {num1 / num2}." if num2 != 0 else "Can’t divide by zero! Try our products?"
return "I can do math—try '2 + 2'. What else can I help with?"
elif intent == "chat":
# Use BlenderBot’s response if appropriate, else nudge toward shopping
if "yes" in input_text.lower() and history and "hat" in history[-1].lower():
return "Great! Besides the Bucket Hat, we have other sustainable items—want to hear more?"
return f"{response} How can I assist with our sustainable products today?" if response else "I’m here to help—anything on your mind?"
if products:
product = products[0]
return f"{response} Also, check out '{product['name']}'—it’s {product['description'].lower()}."
return response if response else "How can I assist with our sustainable products?"
# Endpoints
@app.get("/")
async def root():
return {"message": "Welcome to the NER and Chat API!"}
@app.post("/process/", response_model=CombinedResponse)
async def process_prompt(request: PromptRequest):
try:
logger.info(f"Processing request: {request.input_text}")
input_text = request.input_text
history = request.conversation_history[-1:] if request.conversation_history else []
intent = detect_intent(input_text)
keywords = extract_keywords(input_text)
logger.info(f"Intent: {intent}, Keywords: {keywords}")
products = search_products_by_keywords(keywords)
product_context = get_product_context(products)
logger.info(f"Products matched: {len(products)}")
history_str = " || ".join(history)
full_input = f"{context_msg} || {product_context} || {input_text}" if product_context else f"{context_msg} || {input_text}"
logger.info(f"Full input to model: {full_input}")
logger.info("Tokenizing input...")
inputs = tokenizer(full_input, return_tensors="pt", truncation=True, max_length=64).to(device)
logger.info("Input tokenized successfully.")
logger.info("Generating model response...")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=30,
do_sample=True,
top_p=0.95, # Slightly higher for more variety
temperature=0.8, # Slightly higher for creativity
no_repeat_ngram_size=2
)
logger.info("Model generation complete.")
logger.info("Decoding model output...")
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
logger.info(f"Model response: {response}")
enhanced_response = format_response(response, products, intent, input_text, request.conversation_history)
qa_response = {
"question": input_text,
"answer": enhanced_response,
"score": 1.0
}
logger.info("Returning response...")
return {
"ner": {"extracted_keywords": keywords},
"qa": qa_response,
"products_matched": products
}
except Exception as e:
logger.error(f"Error processing request: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Oops, something went wrong: {str(e)}")
@app.on_event("startup")
async def startup_event():
logger.info("API is running with BlenderBot-400M-distill, connected to MongoDB.")
@app.on_event("shutdown")
def shutdown_event():
client.close()