File size: 8,896 Bytes
32d7156 0281aec 9c206b8 7078460 32d7156 9c206b8 36c9568 32d7156 36c9568 32d7156 9c206b8 32d7156 9246354 32d7156 9c206b8 7078460 32d7156 7078460 9c206b8 32d7156 6dc2e31 32d7156 0281aec 9965e63 4b5e244 9965e63 32d7156 7078460 0281aec 7078460 32d7156 37df822 275cd2b 6a04711 8e7aaf2 32d7156 9c206b8 32d7156 7078460 4b5e244 9965e63 7078460 9965e63 9c206b8 32d7156 9c206b8 0281aec 7078460 0281aec 9c206b8 7078460 9965e63 9c206b8 32d7156 36c9568 32d7156 7078460 32d7156 36c9568 32d7156 36c9568 32d7156 9c206b8 36c9568 37df822 7078460 37df822 7078460 9c206b8 7078460 9c206b8 37df822 32d7156 36c9568 32d7156 7078460 32d7156 37df822 32d7156 275cd2b 32d7156 36c9568 9c206b8 32d7156 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Dict, Any
from pymongo import MongoClient
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import spacy
import os
import logging
import re
import torch
import random # For response variety
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
app = FastAPI()
# MongoDB Setup
connection_string = os.getenv("MONGO_URI", "mongodb+srv://clician:[email protected]/?retryWrites=true&w=majority&appName=Hutterdev")
client = MongoClient(connection_string)
db = client["test"]
products_collection = db["products"]
# BlenderBot Setup
model_repo = "SyedHutter/blenderbot_model"
model_subfolder = "blenderbot_model"
model_dir = "/home/user/app/blenderbot_model"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
if not os.path.exists(model_dir):
logger.info(f"Downloading {model_repo}/{model_subfolder} to {model_dir}...")
tokenizer = BlenderbotTokenizer.from_pretrained(model_repo, subfolder=model_subfolder)
model = BlenderbotForConditionalGeneration.from_pretrained(model_repo, subfolder=model_subfolder)
os.makedirs(model_dir, exist_ok=True)
tokenizer.save_pretrained(model_dir)
model.save_pretrained(model_dir)
logger.info("Model download complete.")
else:
logger.info(f"Loading pre-existing model from {model_dir}.")
tokenizer = BlenderbotTokenizer.from_pretrained(model_dir)
model = BlenderbotForConditionalGeneration.from_pretrained(model_dir).to(device)
model.eval()
# Static Context
context_msg = "I am Hutter, your shopping guide for Hutter Products GmbH, here to help you find sustainable products."
# spaCy Setup
spacy_model_path = "/home/user/app/en_core_web_sm-3.8.0"
nlp = spacy.load(spacy_model_path)
# Pydantic Models
class PromptRequest(BaseModel):
input_text: str
conversation_history: List[str] = []
class CombinedResponse(BaseModel):
ner: Dict[str, Any]
qa: Dict[str, Any]
products_matched: List[Dict[str, Any]]
# Helper Functions
def extract_keywords(text: str) -> List[str]:
doc = nlp(text)
keywords = [token.text for token in doc if token.pos_ in ["NOUN", "PROPN"]]
return list(set(keywords))
def detect_intent(text: str) -> str:
doc = nlp(text.lower())
text_lower = text.lower()
if any(token.text in ["buy", "shop", "find", "recommend", "product", "products", "item", "store", "catalog"] for token in doc) or "what" in text_lower.split()[:2]:
return "recommend_product"
elif any(token.text in ["company", "who", "do"] for token in doc):
return "company_info"
elif "name" in text_lower or "yourself" in text_lower or "you" in doc and "about" in doc:
return "ask_name"
elif re.search(r"\d+\s*[\+\-\*/]\s*\d+", text_lower):
return "math_query"
return "chat" # New fallback for general conversation
def search_products_by_keywords(keywords: List[str]) -> List[Dict[str, Any]]:
if not keywords:
return []
query = {"$or": [{"name": {"$regex": f"\\b{keyword}\\b", "$options": "i"}} for keyword in keywords]}
matched_products = [
{
"id": str(p["_id"]),
"name": p.get("name", "Unknown"),
"skuNumber": p.get("skuNumber", "N/A"),
"description": p.get("description", "No description available")
}
for p in products_collection.find(query)
]
return matched_products
def get_product_context(products: List[Dict]) -> str:
if not products:
return ""
product_str = "Products: " + ", ".join([f"'{p['name']}' - {p['description']}" for p in products[:2]])
return product_str
def format_response(response: str, products: List[Dict], intent: str, input_text: str, history: List[str]) -> str:
no_product_prompts = [
"I’d love to recommend something! What are you looking for in our sustainable catalog?",
"Our sustainable catalog has lots to offer—what catches your interest?",
"Tell me what you’re after, and I’ll find something great from our eco-friendly range!"
]
if intent == "recommend_product":
if not products:
return random.choice(no_product_prompts)
product = products[0]
return f"Check out our '{product['name']}'—it’s {product['description'].lower()}. Want more options?"
elif intent == "company_info":
return "Hutter Products GmbH offers sustainable products like recycled textiles and ocean plastic goods."
elif intent == "ask_name":
return "I’m Hutter, your shopping guide for Hutter Products GmbH. I’m here to help you find eco-friendly products—how can I assist?"
elif intent == "math_query":
match = re.search(r"(\d+)\s*([\+\-\*/])\s*(\d+)", input_text.lower())
if match:
num1, op, num2 = int(match.group(1)), match.group(2), int(match.group(3))
if op == "+": return f"{num1} + {num2} = {num1 + num2}. Need shopping help?"
elif op == "-": return f"{num1} - {num2} = {num1 - num2}. Anything else?"
elif op == "*": return f"{num1} * {num2} = {num1 * num2}. Explore our products?"
elif op == "/": return f"{num1} / {num2} = {num1 / num2}." if num2 != 0 else "Can’t divide by zero! Try our products?"
return "I can do math—try '2 + 2'. What else can I help with?"
elif intent == "chat":
# Use BlenderBot’s response if appropriate, else nudge toward shopping
if "yes" in input_text.lower() and history and "hat" in history[-1].lower():
return "Great! Besides the Bucket Hat, we have other sustainable items—want to hear more?"
return f"{response} How can I assist with our sustainable products today?" if response else "I’m here to help—anything on your mind?"
if products:
product = products[0]
return f"{response} Also, check out '{product['name']}'—it’s {product['description'].lower()}."
return response if response else "How can I assist with our sustainable products?"
# Endpoints
@app.get("/")
async def root():
return {"message": "Welcome to the NER and Chat API!"}
@app.post("/process/", response_model=CombinedResponse)
async def process_prompt(request: PromptRequest):
try:
logger.info(f"Processing request: {request.input_text}")
input_text = request.input_text
history = request.conversation_history[-1:] if request.conversation_history else []
intent = detect_intent(input_text)
keywords = extract_keywords(input_text)
logger.info(f"Intent: {intent}, Keywords: {keywords}")
products = search_products_by_keywords(keywords)
product_context = get_product_context(products)
logger.info(f"Products matched: {len(products)}")
history_str = " || ".join(history)
full_input = f"{context_msg} || {product_context} || {input_text}" if product_context else f"{context_msg} || {input_text}"
logger.info(f"Full input to model: {full_input}")
logger.info("Tokenizing input...")
inputs = tokenizer(full_input, return_tensors="pt", truncation=True, max_length=64).to(device)
logger.info("Input tokenized successfully.")
logger.info("Generating model response...")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=30,
do_sample=True,
top_p=0.95, # Slightly higher for more variety
temperature=0.8, # Slightly higher for creativity
no_repeat_ngram_size=2
)
logger.info("Model generation complete.")
logger.info("Decoding model output...")
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
logger.info(f"Model response: {response}")
enhanced_response = format_response(response, products, intent, input_text, request.conversation_history)
qa_response = {
"question": input_text,
"answer": enhanced_response,
"score": 1.0
}
logger.info("Returning response...")
return {
"ner": {"extracted_keywords": keywords},
"qa": qa_response,
"products_matched": products
}
except Exception as e:
logger.error(f"Error processing request: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Oops, something went wrong: {str(e)}")
@app.on_event("startup")
async def startup_event():
logger.info("API is running with BlenderBot-400M-distill, connected to MongoDB.")
@app.on_event("shutdown")
def shutdown_event():
client.close() |