File size: 13,656 Bytes
423a42f
676abcb
dd5f028
5e589ed
db71d9f
99d7e90
6257584
3694ac7
 
 
e702ced
3694ac7
cead8dd
529badd
dd5f028
686a583
 
01793a8
509ca73
74de502
adb775b
e702ced
 
74de502
 
 
 
 
272850f
 
 
 
 
b28bd83
74de502
f92b9c9
 
 
 
 
 
74de502
f92b9c9
272850f
74de502
 
272850f
b28bd83
 
 
adb775b
 
 
6d8186b
6257584
ec2738b
7497699
 
 
a31113d
a2be7db
10f9ea6
333978a
 
 
 
 
 
0204bd8
646c385
5aecc17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6d9b34
5aecc17
 
 
 
 
 
 
 
 
 
 
10f9ea6
1af9f6b
64fe3e4
5aecc17
e60d9fc
 
 
 
10f9ea6
09a4a4b
0a134b5
09a4a4b
e60d9fc
09a4a4b
 
 
 
 
 
 
 
 
a6b3f44
09a4a4b
a6b3f44
5abdf22
 
 
09a4a4b
10f9ea6
e60d9fc
ccb7aa0
370c257
24c6700
dd5f028
238c426
5aecc17
1af9f6b
 
 
 
 
24c6700
 
adb775b
 
 
 
 
 
f92b9c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adb775b
 
 
 
1af9f6b
423a42f
 
 
 
 
 
 
 
 
 
 
 
 
e947bcb
c34d039
84ceaf6
 
 
 
 
387a3f9
84ceaf6
58fdf31
84ceaf6
24c6700
10f9ea6
423a42f
ccb7aa0
370c257
24c6700
0a134b5
c26acbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebcdc0f
 
529badd
 
 
 
 
7c0f013
529badd
c26acbb
c672f84
c26acbb
ebcdc0f
 
529badd
ebcdc0f
 
529badd
 
 
 
 
 
 
 
ebcdc0f
529badd
 
 
 
 
ebcdc0f
 
 
7c0f013
7226a4c
2cc7269
c26acbb
fdce613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e52308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7f2c28
f92b9c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7f2c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d38ae24
 
3028812
 
d38ae24
 
 
 
 
 
 
 
 
3028812
 
 
 
 
d38ae24
c26acbb
509ca73
1af9f6b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
from huggingface_hub import InferenceClient
import os
import random
import json
from flask import Flask, jsonify
from flask import Flask, request, jsonify, redirect, url_for
from flask_cors import CORS
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine, Column, Integer, String, Boolean, ForeignKey
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import LargeBinary
from sqlalchemy.orm import sessionmaker, relationship
import json

HF_TOKEN = os.getenv("HF_TOKEN")

client = InferenceClient(model="mistralai/Mixtral-8x7B-Instruct-v0.1", token=HF_TOKEN)

connection_string = "postgresql://neondb_owner:[email protected]/neondb?sslmode=require"

Base = declarative_base()

class Stream(Base):
    __tablename__ = 'streams'

    name = Column(String, primary_key=True, nullable=False)

class Mentor(Base):
    __tablename__ = 'mentors'

    id = Column(Integer, primary_key=True)
    mentor_name = Column(String)
    username = Column(String, unique=True)
    profile_photo = Column(LargeBinary)  
    description = Column(String)
    highest_degree = Column(String)
    expertise = Column(String)
    recent_project = Column(String)
    meeting_time = Column(String)
    fees = Column(String)
    stream_name = Column(String, ForeignKey('streams.name')) 
    country = Column(String)
    verified = Column(Boolean, default=False)
 
    stream = relationship("Stream", backref="mentors") 

 
    stream = relationship("Stream", backref="mentors") 

engine = create_engine(connection_string)
Session = sessionmaker(bind=engine)

app = Flask(__name__)
CORS(app)
    
@app.route('/')
def home():
    return jsonify({"message": "Welcome to the Recommendation API!"})
    

def format_prompt(message):
    # Generate a random user prompt and bot response pair
    user_prompt = "UserPrompt"
    bot_response = "BotResponse"

    return f"<s>[INST] {user_prompt} [/INST] {bot_response}</s> [INST] {message} [/INST]"


@app.route('/ai_mentor', methods=['POST'])
def ai_mentor():
    data = request.get_json()
    message = data.get('message')

    if not message:
        return jsonify({"message": "Missing message"}), 400

    temperature = 0.9
    max_new_tokens = 256
    top_p = 0.95
    repetition_penalty = 1.0

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    # Define prompt for the conversation
    prompt = f""" prompt:
     You are an AI mentor providing concise and complete responses. Answer the user's question clearly and in a few sentences.
    User: {message}"""

    formatted_prompt = format_prompt(prompt)

    try:
        # Generate response from the Language Model
        response = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)

        return jsonify({"response": response}), 200
    except Exception as e:
        return jsonify({"message": f"Failed to process request: {str(e)}"}), 500


@app.route('/get_course', methods=['POST'])
def get_course():
    temperature = 0.9
    max_new_tokens = 256
    top_p = 0.95
    repetition_penalty = 1.0

    content = request.json
    # user_degree = content.get('degree')  # Uncomment this line
    user_stream = content.get('stream')

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )
    prompt = f""" prompt: 
    You need to act like as recommendation engine for degree recommendation for a student. Below are current details.
    Stream: {user_stream}
    Based on current details recommend the degree for higher education.
    Note: Output should be list in below format:
    [course1, course2, course3,...]
    Return only answer not prompt and unnecessary stuff, also dont add any special characters or punctuation marks
    """
    formatted_prompt = format_prompt(prompt)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
    return jsonify({"ans": stream})


@app.route('/get_mentor', methods=['POST'])
def get_mentor():
    temperature = 0.9
    max_new_tokens = 256
    top_p = 0.95
    repetition_penalty = 1.0

    content = request.json
    user_stream = content.get('stream')

    session = Session()

    # Query verified mentors
    verified_mentors = session.query(Mentor).filter_by(verified=True).all()

    mentor_list = []
    for mentor in verified_mentors:
        mentor_info = {
            "id": mentor.id,
            "mentor_name": mentor.mentor_name,
            "profile_photo": mentor.profile_photo.decode('utf-8'),  # Decode binary photo to string
            "description": mentor.description,
            "highest_degree": mentor.highest_degree,
            "expertise": mentor.expertise,
            "recent_project": mentor.recent_project,
            "meeting_time": mentor.meeting_time,
            "fees": mentor.fees,
            "stream": mentor.stream,
            "country": mentor.country,
            "verified": mentor.verified
        }
        mentor_list.append(mentor_info)

    session.close()
    
    mentors_data= mentor_list

    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    prompt = f""" prompt:
        You need to act as a recommendation engine for mentor recommendations based on the student's stream and a list of available mentors. 
        
        Stream: {user_stream}
        Mentor list: {mentors_data}
        
        Based on the provided details, recommend the mentors that relate to the student's stream. Dont choose mentor outside mentors list 
        
        Note: The output should be a valid list, containing only the mentor's name from attached mentor list. Dont give unnecessary explanations or additional details

    """
    formatted_prompt = format_prompt(prompt)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
    return jsonify({"ans": stream})


@app.route('/get_streams', methods=['GET'])
def get_streams():
    temperature = 0.9
    max_new_tokens = 256
    top_p = 0.95
    repetition_penalty = 1.0

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    prompt = """
    You are a recommendation engine. 
    List at least 40 branches of study (e.g., Computer Science, Chemical Engineering, Aerospace). 
    **Output should be a valid JSON array with double quotes, like this:**
    ["Computer Science", "Chemical Engineering", "Aerospace", ...]
    Do not add extra text, explanations, or newlines.
    """

    formatted_prompt = format_prompt(prompt)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)

    try:
        # Ensure the model's response is a valid JSON array
        cleaned_data = stream.strip()

        # Fix incomplete or malformed JSON
        if not cleaned_data.startswith("[") or not cleaned_data.endswith("]"):
            cleaned_data = cleaned_data.split("[", 1)[-1]  # Keep text after first [
            cleaned_data = "[" + cleaned_data  # Add missing opening bracket
            cleaned_data = cleaned_data.rsplit("]", 1)[0]  # Keep text before last ]
            cleaned_data = cleaned_data + "]"  # Add missing closing bracket

        # Parse JSON safely
        parsed_data = json.loads(cleaned_data)

        if not isinstance(parsed_data, list):  # Ensure it's a list
            raise ValueError("Response is not a valid list")

        return jsonify({"ans": parsed_data})  # Return clean JSON list
    except Exception as e:
        return jsonify({"error": "Invalid response format", "details": str(e)})



    

@app.route('/get_education_profiles', methods=['GET'])
def get_education_profiles():
    temperature = 0.9
    max_new_tokens = 256
    top_p = 0.95
    repetition_penalty = 1.0

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    sectors = ["engineering", "medical", "arts", "commerce", "science", "management"]  # Example sectors
    prompt = f"""prompt:
    You need to act like a recommendation engine.
    List all education-related profiles in sectors like {', '.join(sectors)}.
    Note: Output should be a list in the below format:
    [profile1, profile2, profile3,...]
    Return only the answer, not the prompt or unnecessary stuff, and don't add any special characters or punctuation marks.
    """

    formatted_prompt = format_prompt(prompt)

    education_profiles = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
    return jsonify({"ans": education_profiles})


@app.route('/get_certificate', methods=['POST'])
def get_certificate():
    temperature = 0.9
    max_new_tokens = 256
    top_p = 0.95
    repetition_penalty = 1.0

    content = request.json
    # user_degree = content.get('degree')  # Uncomment this line
    user_stream = content.get('stream')

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )
    prompt = f""" prompt: 
    You need to act like as recommendation engine for certification recommendation for a student. Below are current details.
    Stream: {user_stream}
    Based on current details recommend the certification 
    Note: Output should be list in below format:
    [course1, course2, course3,...]
    Return only answer not prompt and unnecessary stuff, also dont add any special characters or punctuation marks
    """
    formatted_prompt = format_prompt(prompt)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
    return jsonify({"ans": stream})

@app.route('/get_three_streams', methods=['POST'])
def get_three_streams():
    temperature = 0.9
    max_new_tokens = 256
    top_p = 0.95
    repetition_penalty = 1.0

    content = request.json
    user_degree = content.get('degree')  # Uncomment this line
    

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )
    prompt = f""" prompt: 
    You need to act like as recommendation engine for stream recommendation for a student based on user degree. Below are details.
    Degree: {user_degree}
    Based on above degree details recommend only 3 the streams 
    Note: Output should be list in below format:
    [stream1, stream2, stream2]
    Return only answer not prompt and unnecessary stuff, also dont add any special characters or punctuation marks
    """
    formatted_prompt = format_prompt(prompt)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
    return jsonify({"ans": stream})

@app.route('/get_competition', methods=['POST'])
def get_competition():
    temperature = 0.9
    max_new_tokens = 256
    top_p = 0.95
    repetition_penalty = 1.0

    content = request.json
    # user_degree = content.get('degree')  # Uncomment this line
    user_stream = content.get('stream')

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )
    prompt = f""" prompt: 
    You need to act like as recommendation engine for competition recommendation for a student. Below are current details.
    Stream: {user_stream}
    Based on current details recommend the competition 
    Note: Output should be list in below format:
    [course1, course2, course3,...]
    Return only answer not prompt and unnecessary stuff, also dont add any special characters or punctuation marks
    """
    formatted_prompt = format_prompt(prompt)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
    return jsonify({"ans": stream})


def validate_field(field_name, field_value):
    prompt = f"Check if the following {field_name} is valid: {field_value}. Return 'true' if valid, else 'false'."
    response = client.text_generation(prompt)
    return "true" in response.lower()

@app.route("/validate", methods=["POST"])
def validate():
    data = request.json
    if not data:
        return jsonify({"error": "No data provided"}), 400
    
    validation_results = {}
    for field, value in data.items():
        validation_results[field] = validate_field(field, value)
    
    return jsonify(validation_results)

    
if __name__ == '__main__':
    app.run(debug=True)