Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -1,11 +1,7 @@
|
|
1 |
-
|
2 |
from flask import Flask, request, jsonify
|
3 |
from huggingface_hub import InferenceClient
|
4 |
|
5 |
-
|
6 |
-
client = InferenceClient(
|
7 |
-
"mistralai/Mistral-7B-Instruct-v0.1"
|
8 |
-
)
|
9 |
|
10 |
app = Flask(__name__)
|
11 |
|
@@ -17,13 +13,18 @@ with open(file_path, "r") as file:
|
|
17 |
def home():
|
18 |
return jsonify({"message": "Welcome to the Recommendation API!"})
|
19 |
|
20 |
-
|
21 |
def format_prompt(message):
|
22 |
prompt = "<s>"
|
23 |
prompt += f"[INST] {message} [/INST]"
|
24 |
prompt += "</s>"
|
25 |
return prompt
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
@app.route('/get_course', methods=['POST'])
|
28 |
def recommend():
|
29 |
temperature = 0.9
|
@@ -54,26 +55,23 @@ def recommend():
|
|
54 |
{{"course1:course_name, course2:course_name, course3:course_name,...}}
|
55 |
"""
|
56 |
formatted_prompt = format_prompt(prompt)
|
57 |
-
print(formatted_prompt)
|
58 |
-
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
59 |
-
output = ""
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
yield output
|
64 |
-
return output
|
65 |
|
66 |
@app.route('/get_mentor', methods=['POST'])
|
67 |
def mentor():
|
68 |
-
temperature=0.9
|
69 |
-
max_new_tokens=256
|
70 |
-
top_p=0.95
|
71 |
-
repetition_penalty=1.0
|
|
|
72 |
content = request.json
|
73 |
user_degree = content.get('degree')
|
74 |
user_stream = content.get('stream')
|
75 |
user_semester = content.get('semester')
|
76 |
courses = content.get('courses')
|
|
|
77 |
temperature = float(temperature)
|
78 |
if temperature < 1e-2:
|
79 |
temperature = 1e-2
|
@@ -89,12 +87,10 @@ def mentor():
|
|
89 |
)
|
90 |
prompt = f""" prompt:
|
91 |
You need to act like as recommendataion engine for mentor recommendation for student based on below details also the list of mentors with their experience is attached.
|
92 |
-
|
93 |
Degree: {user_degree}
|
94 |
Stream: {user_stream}
|
95 |
Current Semester: {user_semester}
|
96 |
courses opted:{courses}
|
97 |
-
|
98 |
Mentor list= {mentors_data}
|
99 |
Based on above details recommend the mentor that realtes to above details
|
100 |
Note: Output should be valid json format in below format:
|
@@ -103,13 +99,7 @@ def mentor():
|
|
103 |
formatted_prompt = format_prompt(prompt)
|
104 |
|
105 |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
106 |
-
|
107 |
-
|
108 |
-
for response in stream:
|
109 |
-
output += response.token.text
|
110 |
-
yield output
|
111 |
-
return jsonify({"ans":output})
|
112 |
-
|
113 |
|
114 |
if __name__ == '__main__':
|
115 |
-
app.run(debug=True)
|
|
|
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
+
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1")
|
|
|
|
|
|
|
5 |
|
6 |
app = Flask(__name__)
|
7 |
|
|
|
13 |
def home():
|
14 |
return jsonify({"message": "Welcome to the Recommendation API!"})
|
15 |
|
|
|
16 |
def format_prompt(message):
|
17 |
prompt = "<s>"
|
18 |
prompt += f"[INST] {message} [/INST]"
|
19 |
prompt += "</s>"
|
20 |
return prompt
|
21 |
|
22 |
+
def generate_output(stream):
|
23 |
+
output = ""
|
24 |
+
for response in stream:
|
25 |
+
output += response.token.text
|
26 |
+
yield output
|
27 |
+
|
28 |
@app.route('/get_course', methods=['POST'])
|
29 |
def recommend():
|
30 |
temperature = 0.9
|
|
|
55 |
{{"course1:course_name, course2:course_name, course3:course_name,...}}
|
56 |
"""
|
57 |
formatted_prompt = format_prompt(prompt)
|
|
|
|
|
|
|
58 |
|
59 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
60 |
+
return jsonify({"ans": list(generate_output(stream))})
|
|
|
|
|
61 |
|
62 |
@app.route('/get_mentor', methods=['POST'])
|
63 |
def mentor():
|
64 |
+
temperature = 0.9
|
65 |
+
max_new_tokens = 256
|
66 |
+
top_p = 0.95
|
67 |
+
repetition_penalty = 1.0
|
68 |
+
|
69 |
content = request.json
|
70 |
user_degree = content.get('degree')
|
71 |
user_stream = content.get('stream')
|
72 |
user_semester = content.get('semester')
|
73 |
courses = content.get('courses')
|
74 |
+
|
75 |
temperature = float(temperature)
|
76 |
if temperature < 1e-2:
|
77 |
temperature = 1e-2
|
|
|
87 |
)
|
88 |
prompt = f""" prompt:
|
89 |
You need to act like as recommendataion engine for mentor recommendation for student based on below details also the list of mentors with their experience is attached.
|
|
|
90 |
Degree: {user_degree}
|
91 |
Stream: {user_stream}
|
92 |
Current Semester: {user_semester}
|
93 |
courses opted:{courses}
|
|
|
94 |
Mentor list= {mentors_data}
|
95 |
Based on above details recommend the mentor that realtes to above details
|
96 |
Note: Output should be valid json format in below format:
|
|
|
99 |
formatted_prompt = format_prompt(prompt)
|
100 |
|
101 |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
102 |
+
return jsonify({"ans": list(generate_output(stream))})
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
if __name__ == '__main__':
|
105 |
+
app.run(debug=True)
|