Feelings_to_Emoji / REFERENCE.md
Dan Mo
Add comprehensive technical reference documentation for the Feelings to Emoji application
975f207
|
raw
history blame contribute delete
4.91 kB
# Feelings to Emoji: Technical Reference
This document provides technical details about the implementation of the Feelings to Emoji application.
## Project Structure
The application is organized into several Python modules:
- `app.py` - Main application file with Gradio interface
- `emoji_processor.py` - Core processing logic for emoji matching
- `config.py` - Configuration settings
- `utils.py` - Utility functions
- `generate_embeddings.py` - Standalone tool to pre-generate embeddings
## Embedding Models
The system uses the following sentence embedding models from the Sentence Transformers library:
| Model Key | Model ID | Size | Description |
|-----------|----------|------|-------------|
| mpnet | all-mpnet-base-v2 | 110M | Balanced, great general-purpose model |
| gte | thenlper/gte-large | 335M | Context-rich, good for emotion & nuance |
| bge | BAAI/bge-large-en-v1.5 | 350M | Tuned for ranking & high-precision similarity |
## Emoji Matching Algorithm
The application uses cosine similarity between sentence embeddings to match text with emojis:
1. For each emoji category (emotion and event):
- Embed descriptions using the selected model
- Calculate cosine similarity between the input text embedding and each emoji description embedding
- Return the emoji with the highest similarity score
2. The embeddings are pre-computed and cached to improve performance:
- Stored as pickle files in the `embeddings/` directory
- Generated using `generate_embeddings.py`
- Loaded at startup to minimize processing time
## Module Reference
### `config.py`
Contains configuration settings including:
- `CONFIG`: Dictionary with basic application settings (model name, file paths, etc.)
- `EMBEDDING_MODELS`: Dictionary defining the available embedding models
### `utils.py`
Utility functions including:
- `setup_logging()`: Configures application logging
- `kitchen_txt_to_dict(filepath)`: Parses emoji dictionary files
- `save_embeddings_to_pickle(embeddings, filepath)`: Saves embeddings to pickle files
- `load_embeddings_from_pickle(filepath)`: Loads embeddings from pickle files
- `get_embeddings_pickle_path(model_id, emoji_type)`: Generates consistent paths for embedding files
### `emoji_processor.py`
Core processing logic:
- `EmojiProcessor`: Main class for emoji matching and processing
- `__init__(model_name=None, model_key=None, use_cached_embeddings=True)`: Initializes the processor with a specific model
- `load_emoji_dictionaries(emotion_file, item_file)`: Loads emoji dictionaries from text files
- `switch_model(model_key)`: Switches to a different embedding model
- `sentence_to_emojis(sentence)`: Processes text to find matching emojis and generate mashup
- `find_top_emojis(embedding, emoji_embeddings, top_n=1)`: Finds top matching emojis using cosine similarity
### `app.py`
Gradio interface:
- `EmojiMashupApp`: Main application class
- `create_interface()`: Creates the Gradio interface
- `process_with_model(model_selection, text, use_cached_embeddings)`: Processes text with selected model
- `get_random_example()`: Gets a random example sentence for demonstration
### `generate_embeddings.py`
Standalone utility to pre-generate embeddings:
- `generate_embeddings_for_model(model_key, model_info)`: Generates embeddings for a specific model
- `main()`: Main function that processes all models and saves embeddings
## Emoji Data Files
- `google-emoji-kitchen-emotion.txt`: Emotion emojis with descriptions
- `google-emoji-kitchen-item.txt`: Event/object emojis with descriptions
- `google-emoji-kitchen-compatible.txt`: Compatibility information for emoji combinations
## Embedding Cache Structure
The `embeddings/` directory contains pre-generated embeddings in pickle format:
- `[model_id]_emotion.pkl`: Embeddings for emotion emojis
- `[model_id]_event.pkl`: Embeddings for event/object emojis
## API Usage Examples
### Using the EmojiProcessor Directly
```python
from emoji_processor import EmojiProcessor
# Initialize with default model (mpnet)
processor = EmojiProcessor()
processor.load_emoji_dictionaries()
# Process a sentence
emotion, event, image = processor.sentence_to_emojis("I'm feeling happy today!")
print(f"Emotion emoji: {emotion}")
print(f"Event emoji: {event}")
# image contains the PIL Image object of the mashup
```
### Switching Models
```python
# Switch to a different model
processor.switch_model("gte")
# Process with the new model
emotion, event, image = processor.sentence_to_emojis("I'm feeling anxious about tomorrow.")
```
## Performance Considerations
- Embedding generation is computationally intensive but only happens once per model
- Using cached embeddings significantly improves response time
- Larger models (GTE, BGE) may provide better accuracy but require more resources
- The MPNet model offers a good balance of performance and accuracy for most use cases