SujalAcharya commited on
Commit
94b97ad
·
verified ·
1 Parent(s): 894b494

Delete dynamic_pricing_bandit_app.py

Browse files
Files changed (1) hide show
  1. dynamic_pricing_bandit_app.py +0 -69
dynamic_pricing_bandit_app.py DELETED
@@ -1,69 +0,0 @@
1
- # dynamic_pricing_bandit_app.py
2
- from datasets import load_dataset
3
- import pandas as pd
4
- import numpy as np
5
- import gradio as gr
6
- import json
7
-
8
- PRICE_POINTS = [5000, 7500, 10000, 12500, 15000]
9
- SEGMENTS = ["Retail", "HNI", "Corporate"]
10
- DEAL_TYPES = ["M&A Advisory", "Debt Issuance", "Equity Offering", "Restructuring"]
11
- REGIONS = ["North America", "Europe", "Asia Pacific", "Latin America", "Middle East"]
12
- INDUSTRIES = ["Technology", "Healthcare", "Financial Services", "Energy", "Consumer Goods", "Industrial"]
13
-
14
- class ThompsonBandit:
15
- def __init__(self, n_arms):
16
- self.successes = np.ones(n_arms)
17
- self.failures = np.ones(n_arms)
18
-
19
- def select_arm(self):
20
- return np.argmax(np.random.beta(self.successes, self.failures))
21
-
22
- def update(self, arm, reward):
23
- if reward:
24
- self.successes[arm] += 1
25
- else:
26
- self.failures[arm] += 1
27
-
28
- # Load HF dataset
29
- dataset = load_dataset("banking77", split="train[:500]")
30
- df = pd.DataFrame(dataset)
31
- df["segment"] = np.random.choice(SEGMENTS, len(df))
32
- df["deal_type"] = np.random.choice(DEAL_TYPES, len(df))
33
- df["deal_size"] = np.random.lognormal(mean=16, sigma=1.0, size=len(df)).astype(int)
34
- df["region"] = np.random.choice(REGIONS, len(df))
35
- df["industry"] = np.random.choice(INDUSTRIES, len(df))
36
-
37
- bandit = ThompsonBandit(len(PRICE_POINTS))
38
-
39
- def recommend_price(segment, deal_type, deal_size_str, region, industry):
40
- try:
41
- deal_size = float(deal_size_str.replace("$", "").replace(",", ""))
42
- arm = bandit.select_arm()
43
- price = PRICE_POINTS[arm]
44
- acceptance_prob = max(0.1, 1 - (price / PRICE_POINTS[-1]) * 0.8)
45
- accepted = np.random.binomial(1, acceptance_prob)
46
- bandit.update(arm, accepted)
47
- return f"Recommended Price: ${price:,}\nClient would {'accept' if accepted else 'decline'} this price."
48
- except Exception as e:
49
- return str(e)
50
-
51
- with gr.Blocks() as app:
52
- gr.Markdown("# Dynamic Pricing Bandit App")
53
- with gr.Row():
54
- with gr.Column():
55
- segment_input = gr.Dropdown(choices=SEGMENTS, label="Client Segment")
56
- deal_type_input = gr.Dropdown(choices=DEAL_TYPES, label="Deal Type")
57
- deal_size_input = gr.Textbox(label="Deal Size (USD)", value="$50000000")
58
- region_input = gr.Dropdown(choices=REGIONS, label="Region")
59
- industry_input = gr.Dropdown(choices=INDUSTRIES, label="Industry")
60
- btn = gr.Button("Get Recommendation")
61
- with gr.Column():
62
- result = gr.Markdown()
63
-
64
- btn.click(fn=recommend_price,
65
- inputs=[segment_input, deal_type_input, deal_size_input, region_input, industry_input],
66
- outputs=result)
67
-
68
- if __name__ == "__main__":
69
- app.launch()