SujalAcharya commited on
Commit
894b494
·
verified ·
1 Parent(s): 2c5e98f

Upload 2 files

Browse files
Files changed (2) hide show
  1. dynamic_pricing_bandit_app.py +69 -0
  2. requirements.txt +4 -0
dynamic_pricing_bandit_app.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dynamic_pricing_bandit_app.py
2
+ from datasets import load_dataset
3
+ import pandas as pd
4
+ import numpy as np
5
+ import gradio as gr
6
+ import json
7
+
8
+ PRICE_POINTS = [5000, 7500, 10000, 12500, 15000]
9
+ SEGMENTS = ["Retail", "HNI", "Corporate"]
10
+ DEAL_TYPES = ["M&A Advisory", "Debt Issuance", "Equity Offering", "Restructuring"]
11
+ REGIONS = ["North America", "Europe", "Asia Pacific", "Latin America", "Middle East"]
12
+ INDUSTRIES = ["Technology", "Healthcare", "Financial Services", "Energy", "Consumer Goods", "Industrial"]
13
+
14
+ class ThompsonBandit:
15
+ def __init__(self, n_arms):
16
+ self.successes = np.ones(n_arms)
17
+ self.failures = np.ones(n_arms)
18
+
19
+ def select_arm(self):
20
+ return np.argmax(np.random.beta(self.successes, self.failures))
21
+
22
+ def update(self, arm, reward):
23
+ if reward:
24
+ self.successes[arm] += 1
25
+ else:
26
+ self.failures[arm] += 1
27
+
28
+ # Load HF dataset
29
+ dataset = load_dataset("banking77", split="train[:500]")
30
+ df = pd.DataFrame(dataset)
31
+ df["segment"] = np.random.choice(SEGMENTS, len(df))
32
+ df["deal_type"] = np.random.choice(DEAL_TYPES, len(df))
33
+ df["deal_size"] = np.random.lognormal(mean=16, sigma=1.0, size=len(df)).astype(int)
34
+ df["region"] = np.random.choice(REGIONS, len(df))
35
+ df["industry"] = np.random.choice(INDUSTRIES, len(df))
36
+
37
+ bandit = ThompsonBandit(len(PRICE_POINTS))
38
+
39
+ def recommend_price(segment, deal_type, deal_size_str, region, industry):
40
+ try:
41
+ deal_size = float(deal_size_str.replace("$", "").replace(",", ""))
42
+ arm = bandit.select_arm()
43
+ price = PRICE_POINTS[arm]
44
+ acceptance_prob = max(0.1, 1 - (price / PRICE_POINTS[-1]) * 0.8)
45
+ accepted = np.random.binomial(1, acceptance_prob)
46
+ bandit.update(arm, accepted)
47
+ return f"Recommended Price: ${price:,}\nClient would {'accept' if accepted else 'decline'} this price."
48
+ except Exception as e:
49
+ return str(e)
50
+
51
+ with gr.Blocks() as app:
52
+ gr.Markdown("# Dynamic Pricing Bandit App")
53
+ with gr.Row():
54
+ with gr.Column():
55
+ segment_input = gr.Dropdown(choices=SEGMENTS, label="Client Segment")
56
+ deal_type_input = gr.Dropdown(choices=DEAL_TYPES, label="Deal Type")
57
+ deal_size_input = gr.Textbox(label="Deal Size (USD)", value="$50000000")
58
+ region_input = gr.Dropdown(choices=REGIONS, label="Region")
59
+ industry_input = gr.Dropdown(choices=INDUSTRIES, label="Industry")
60
+ btn = gr.Button("Get Recommendation")
61
+ with gr.Column():
62
+ result = gr.Markdown()
63
+
64
+ btn.click(fn=recommend_price,
65
+ inputs=[segment_input, deal_type_input, deal_size_input, region_input, industry_input],
66
+ outputs=result)
67
+
68
+ if __name__ == "__main__":
69
+ app.launch()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ gradio
2
+ datasets
3
+ pandas
4
+ numpy