File size: 8,060 Bytes
d43fa94 41928ca 1b4aac1 3ecadea 41928ca 79ccf40 d43fa94 e4bb78b 79ccf40 9c430d5 79ccf40 3ecadea b94b847 61d529e f2dcdc2 61d529e f2dcdc2 79ccf40 f2dcdc2 79ccf40 f8d604d b94b847 79ccf40 b94b847 79ccf40 41928ca 79ccf40 41928ca b94b847 41928ca b94b847 41928ca b94b847 41928ca b94b847 41928ca b94b847 41928ca b94b847 41928ca 79ccf40 41928ca b94b847 79ccf40 b94b847 41928ca b94b847 41928ca 79ccf40 41928ca 79ccf40 41928ca 79ccf40 41928ca b94b847 41928ca 79ccf40 b94b847 41928ca 79ccf40 41928ca 79ccf40 41928ca b94b847 79ccf40 b94b847 41928ca b94b847 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import os
import gradio as gr
import torch
import json
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
# Set Hugging Face Token for Authentication
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") # Ensure this is set in your environment
# Add this at the beginning of your script
token_value = os.getenv("HUGGINGFACE_TOKEN")
if token_value:
print("HUGGINGFACE_TOKEN is set")
# Print first few characters to verify it's not empty
print(f"Token starts with: {token_value[:5]}...")
else:
print("HUGGINGFACE_TOKEN is not set")
# Correct model paths (replace with your actual paths)
BASE_MODEL = "meta-llama/Llama-3.2-1B-Instruct" # Ensure this is the correct identifier
QLORA_ADAPTER = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8" # Ensure this is correct
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4" # Ensure this is correct
# Function to load Llama model
def load_llama_model():
print(f"🔄 Loading Base Model: {BASE_MODEL}")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, use_auth_token=HUGGINGFACE_TOKEN)
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
use_auth_token=HUGGINGFACE_TOKEN,
torch_dtype=torch.float16,
low_cpu_mem_usage=True
)
print(f"✅ Base Model Loaded Successfully")
# Load QLoRA adapter if available
print(f"🔄 Loading QLoRA Adapter: {QLORA_ADAPTER}")
model = PeftModel.from_pretrained(model, QLORA_ADAPTER, use_auth_token=HUGGINGFACE_TOKEN)
print("🔄 Merging LoRA Weights...")
model = model.merge_and_unload()
print("✅ QLoRA Adapter Loaded Successfully")
model.eval()
return tokenizer, model
# Function to load Llama Guard Model for content moderation
def load_llama_guard():
print(f"🔄 Loading Llama Guard Model: {LLAMA_GUARD_NAME}")
tokenizer = AutoTokenizer.from_pretrained(LLAMA_GUARD_NAME, use_auth_token=HUGGINGFACE_TOKEN)
model = AutoModelForCausalLM.from_pretrained(
LLAMA_GUARD_NAME,
use_auth_token=HUGGINGFACE_TOKEN,
torch_dtype=torch.float16,
low_cpu_mem_usage=True
)
model.eval()
print("✅ Llama Guard Model Loaded Successfully")
return tokenizer, model
except Exception as e:
print(f"❌ Error loading model {model_path}: {e}")
raise
# Load Llama 3.2 model
tokenizer, model = load_llama_model(QLORA_ADAPTER)
# Load Llama Guard for content moderation
guard_tokenizer, guard_model = load_llama_model(LLAMA_GUARD_NAME, is_guard=True)
# Define Prompt Templates (same as before)
PROMPTS = {
"project_analysis": """<|begin_of_text|><|prompt|>Analyze this project description and generate:
1. Project timeline with milestones
2. Required technology stack
3. Potential risks
4. Team composition
5. Cost estimation
Project: {project_description}<|completion|>""",
"code_generation": """<|begin_of_text|><|prompt|>Generate implementation code for this feature:
{feature_description}
Considerations:
- Use {programming_language}
- Follow {coding_standards}
- Include error handling
- Add documentation<|completion|>""",
"risk_analysis": """<|begin_of_text|><|prompt|>Predict potential risks for this project plan:
{project_data}
Format output as JSON with risk types, probabilities, and mitigation strategies<|completion|>"""
}
# Function: Content Moderation using Llama Guard (same as before)
def moderate_input(user_input):
prompt = f"""<|begin_of_text|><|user|>
Input: {user_input}
Please verify that this input doesn't violate any content policies.
<|assistant|>"""
inputs = guard_tokenizer(prompt, return_tensors="pt", truncation=True)
with torch.no_grad():
outputs = guard_model.generate(
inputs.input_ids,
max_length=256,
temperature=0.1
)
response = guard_tokenizer.decode(outputs[0], skip_special_tokens=True)
if "flagged" in response.lower() or "violated" in response.lower() or "policy violation" in response.lower():
return "⚠️ Content flagged by Llama Guard. Please modify your input."
return None
# Function: Generate AI responses (same as before)
def generate_response(prompt_type, **kwargs):
prompt = PROMPTS[prompt_type].format(**kwargs)
moderation_warning = moderate_input(prompt)
if moderation_warning:
return moderation_warning
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=1024,
temperature=0.7 if prompt_type == "project_analysis" else 0.5,
top_p=0.9,
do_sample=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Gradio UI (same as before)
def create_gradio_interface():
with gr.Blocks(title="AI Project Manager", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🚀 AI-Powered Project Manager & Code Assistant")
with gr.Tab("Project Setup"):
project_input = gr.Textbox(label="Project Description", lines=5, placeholder="Describe your project...")
project_output = gr.Textbox(label="Project Analysis", lines=15)
analyze_btn = gr.Button("Analyze Project")
analyze_btn.click(analyze_project, inputs=project_input, outputs=project_output)
with gr.Tab("Code Assistant"):
code_input = gr.Textbox(label="Feature Description", lines=3)
lang_select = gr.Dropdown(["Python", "JavaScript", "Java", "C++"], label="Language", value="Python")
standards_select = gr.Dropdown(["PEP8", "Google", "Airbnb"], label="Coding Standard", value="PEP8")
code_output = gr.Code(label="Generated Code")
code_btn = gr.Button("Generate Code")
code_btn.click(generate_code, inputs=[code_input, lang_select, standards_select], outputs=code_output)
with gr.Tab("Risk Analysis"):
risk_input = gr.Textbox(label="Project Plan", lines=5)
risk_output = gr.JSON(label="Risk Predictions")
risk_btn = gr.Button("Predict Risks")
risk_btn.click(predict_risks, inputs=risk_input, outputs=risk_output)
with gr.Tab("Live Collaboration"):
gr.Markdown("## Real-time Project Collaboration")
chat = gr.Chatbot(height=400)
msg = gr.Textbox(label="Chat with AI PM")
clear = gr.Button("Clear Chat")
def respond(message, chat_history):
moderation_warning = moderate_input(message)
if moderation_warning:
chat_history.append((message, moderation_warning))
return "", chat_history
history_text = ""
for i, (usr, ai) in enumerate(chat_history[-3:]):
history_text += f"User: {usr}\nAI: {ai}\n"
prompt = f"""<|begin_of_text|><|prompt|>Project Management Chat:
Context: {message}
Chat History: {history_text}
User: {message}<|completion|>"""
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=1024,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
chat_history.append((message, response))
return "", chat_history
msg.submit(respond, [msg, chat], [msg, chat])
clear.click(lambda: None, None, chat, queue=False)
return demo
# Run Gradio App
if __name__ == "__main__":
interface = create_gradio_interface()
interface.launch(share=True) |