Update app.py
Browse files
app.py
CHANGED
@@ -18,53 +18,73 @@ def load_llama_model(model_path, is_guard=False):
|
|
18 |
print(f"Loading model: {model_path}")
|
19 |
|
20 |
try:
|
21 |
-
# Check if token exists
|
22 |
token = os.getenv("HUGGINGFACE_TOKEN")
|
23 |
if not token:
|
24 |
-
|
25 |
-
|
26 |
-
# Load tokenizer with proper token
|
27 |
-
tokenizer = LlamaTokenizer.from_pretrained(
|
28 |
-
BASE_MODEL,
|
29 |
-
token=token,
|
30 |
-
use_fast=False # Sometimes helps with compatibility issues
|
31 |
-
)
|
32 |
-
|
33 |
-
# Load config first (to avoid shape mismatch errors)
|
34 |
-
config = AutoModelForCausalLM.from_pretrained(
|
35 |
-
BASE_MODEL,
|
36 |
-
config_only=True,
|
37 |
-
token=token
|
38 |
-
).config
|
39 |
-
|
40 |
-
# Load model from config
|
41 |
-
model = AutoModelForCausalLM.from_pretrained(
|
42 |
-
model_path,
|
43 |
-
token=token,
|
44 |
-
config=config,
|
45 |
-
device_map="auto", # Better device management
|
46 |
-
torch_dtype=torch.float16 # Use half precision for efficiency
|
47 |
-
)
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
# Load QLoRA adapter if applicable
|
52 |
if not is_guard and "QLORA" in model_path:
|
53 |
print("Loading QLoRA adapter...")
|
|
|
|
|
54 |
model = PeftModel.from_pretrained(
|
55 |
model,
|
56 |
-
model_path,
|
57 |
-
|
58 |
)
|
59 |
print("Merging LoRA weights...")
|
60 |
model = model.merge_and_unload()
|
61 |
-
|
|
|
62 |
return tokenizer, model
|
63 |
|
64 |
except Exception as e:
|
65 |
print(f"❌ Error loading model {model_path}: {e}")
|
66 |
raise
|
67 |
-
|
68 |
# Load Llama 3.2 model
|
69 |
tokenizer, model = load_llama_model(QLORA_ADAPTER)
|
70 |
|
|
|
18 |
print(f"Loading model: {model_path}")
|
19 |
|
20 |
try:
|
21 |
+
# Check if token exists
|
22 |
token = os.getenv("HUGGINGFACE_TOKEN")
|
23 |
if not token:
|
24 |
+
print("Warning: HUGGINGFACE_TOKEN not set, attempting to load without authentication")
|
25 |
+
token = None # Set to None explicitly
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# First, try standard loading method with token handling
|
28 |
+
try:
|
29 |
+
tokenizer = LlamaTokenizer.from_pretrained(
|
30 |
+
BASE_MODEL,
|
31 |
+
use_auth_token=token # Use this parameter instead of token=
|
32 |
+
)
|
33 |
+
|
34 |
+
model = AutoModelForCausalLM.from_pretrained(
|
35 |
+
model_path,
|
36 |
+
use_auth_token=token,
|
37 |
+
torch_dtype=torch.float16,
|
38 |
+
low_cpu_mem_usage=True
|
39 |
+
)
|
40 |
+
|
41 |
+
except Exception as e:
|
42 |
+
print(f"Standard loading failed: {e}, trying alternative method...")
|
43 |
+
|
44 |
+
# Fall back to alternative loading method
|
45 |
+
# Download files first to ensure they exist locally
|
46 |
+
from huggingface_hub import snapshot_download
|
47 |
+
|
48 |
+
cache_dir = snapshot_download(
|
49 |
+
BASE_MODEL,
|
50 |
+
use_auth_token=token,
|
51 |
+
local_dir="./model_cache"
|
52 |
+
)
|
53 |
+
|
54 |
+
# Load tokenizer from local files
|
55 |
+
tokenizer = LlamaTokenizer.from_pretrained(
|
56 |
+
cache_dir,
|
57 |
+
local_files_only=True
|
58 |
+
)
|
59 |
+
|
60 |
+
# Load model from local files
|
61 |
+
model = AutoModelForCausalLM.from_pretrained(
|
62 |
+
model_path,
|
63 |
+
use_auth_token=token,
|
64 |
+
torch_dtype=torch.float16,
|
65 |
+
low_cpu_mem_usage=True
|
66 |
+
)
|
67 |
|
68 |
# Load QLoRA adapter if applicable
|
69 |
if not is_guard and "QLORA" in model_path:
|
70 |
print("Loading QLoRA adapter...")
|
71 |
+
from peft import PeftConfig, PeftModel
|
72 |
+
|
73 |
model = PeftModel.from_pretrained(
|
74 |
model,
|
75 |
+
model_path,
|
76 |
+
use_auth_token=token
|
77 |
)
|
78 |
print("Merging LoRA weights...")
|
79 |
model = model.merge_and_unload()
|
80 |
+
|
81 |
+
model.eval()
|
82 |
return tokenizer, model
|
83 |
|
84 |
except Exception as e:
|
85 |
print(f"❌ Error loading model {model_path}: {e}")
|
86 |
raise
|
87 |
+
|
88 |
# Load Llama 3.2 model
|
89 |
tokenizer, model = load_llama_model(QLORA_ADAPTER)
|
90 |
|