dockerb2 / app.py
Shunfeng Zheng
Update app.py
c07d705 verified
# import gradio as gr
# import time # 模拟处理耗时
# import os
# import spacy
# from spacy import displacy
# import pandas as pd
# nlp = spacy.load("en_core_web_md")
# def process_api(input_text):
# # 这里编写实际的后端处理逻辑
# return {
# "status": "success",
# # "result": f"Processed: {input_text.upper()}",
# "result": f"Processed: {nlp(input_text).to_json()}",
# "timestamp": time.time()
# }
# # 设置API格式为JSON
# gr.Interface(
# fn=process_api,
# inputs="text",
# outputs="json",
# title="Backend API",
# allow_flagging="never"
# ).launch()
import gradio as gr
import time
import spacy
from spacy.tokens import Span, Doc, Token
from spacy.language import Language
import llm_ent_extract
import regex_spatial
import re
colors = {'GPE': "#43c6fc", "LOC": "#fd9720", "RSE":"#a6e22d"}
options = {"ents": ['GPE', 'LOC', "RSE"], "colors": colors}
HTML_WRAPPER = """<div style="overflow-x: auto; border: none solid #a6e22d; border-radius: 0.25rem; padding: 1rem">{}</div>"""
BASE_URL = ""
model = ""
types = ""
nlp = spacy.load("en_core_web_md")
gpe_selected = 'GPE'
loc_selected = 'loc'
rse_selected = 'rse'
rse_id = "rse_id"
def set_selected_entities(doc):
global gpe_selected, loc_selected, rse_selected, model
ents = [ent for ent in doc.ents if ent.label_ == gpe_selected or ent.label_ == loc_selected or ent.label_ == rse_selected]
doc.ents = ents
return doc
def update_entities(doc, entity_texts, replace=True):
"""
根据给定的文本内容标注实体,并直接修改 doc.ents。
:param doc: spaCy 解析后的 Doc 对象
:param entity_texts: 字典,键是要标注的实体文本,值是对应的实体类别
:param replace: 布尔值,True 则替换现有实体,False 则保留现有实体并添加新的
"""
new_ents = list(doc.ents) if not replace else [] # 如果 replace=False,保留已有实体
for ent_text, ent_label in entity_texts.items():
start = doc.text.find(ent_text) # 在全文中查找文本位置
if start != -1:
start_token = len(doc.text[:start].split()) # 计算起始 token 索引
end_token = start_token + len(ent_text.split()) # 计算结束 token 索引
if start_token < len(doc) and end_token <= len(doc): # 确保索引不越界
new_ent = Span(doc, start_token, end_token, label=ent_label)
new_ents.append(new_ent)
doc.set_ents(new_ents) # 更新 doc.ents
def find_ent_by_regex(doc, sentence, ent, regex):
global id
if id == "":
id = ent.text
for match in re.finditer(regex, doc.text):
start, end = match.span()
if(start>= sentence.start_char and start<= sentence.end_char):
span = doc.char_span(start, end)
if span is not None:
id = span.text +"_"+ id
if(start > ent.end_char):
ent.end_char = end
else:
ent.start_char = start
return ent
return ent
def set_extension():
Span.set_extension(rse_id, default="", force=True)
Doc.set_extension(rse_id, default="", force=True)
Token.set_extension(rse_id, default="", force=True)
def get_level1(doc, sentence, ent):
return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level1_regex())
def get_level2(doc, sentence, ent):
return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level2_regex())
def get_level3(doc, sentence, ent):
return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level3_regex())
def get_relative_entity(doc, sentence, ent):
global id
id = ""
rel_entity = get_level1(doc, sentence, ent)
# print(1111 ,rel_entity)
rel_entity = get_level2(doc, sentence, rel_entity)
# print(2222 ,rel_entity)
rel_entity = get_level3(doc, sentence, rel_entity)
# print(3333 ,rel_entity)
if("_" in id):
rel_entity = doc.char_span(rel_entity.start_char, rel_entity.end_char, "RSE")
rel_entity._.rse_id = id
# print(id, 'idid')
# print(rel_entity._.rse_id, '._._')
return rel_entity
rel_entity = doc.char_span(ent.start_char, ent.end_char, ent.label_)
rel_entity._.rse_id = id
# print(4444 ,rel_entity)
return rel_entity
@Language.component("spatial_pipeline")
def get_spatial_ent(doc):
set_extension()
new_ents = []
# ents = [ent for ent in doc.ents if ent.label_ == "GPE" or ent.label_ == "LOC"] # 筛选出ase
# LLM 输出
# GPE = '[###Pyrmont###, ###Glebe###]' # LLM 输出的实体
GPE = llm_ent_extract.extract_GPE(doc.text) # LLM 输出的实体
print(doc.text, 'llmin')
print(GPE, 'llout')
GPE = llm_ent_extract.extract(GPE, 'GPE')
print(GPE, 'llmout2')
update_entities(doc, GPE, True)
ents = doc.ents
print(ents, 'eee')
end = None
for ent in ents:
if ent.end != len(doc):
next_token = doc[ent.end]
if end is not None:
start = end
else:
start = ent.sent.start
if next_token.text.lower() in regex_spatial.get_keywords():
end = next_token.i
else:
end = ent.end
else:
start = ent.sent.start
end = ent.end
# print(doc, '//',start, '//', end, 999888)
# print(doc[start],'//', doc[end])
# print(ents, 999)
rsi_ent = get_relative_entity(doc,Span(doc, start, end), ent)
# print(doc.ents[0]._.rse_id, '._._2')
# print(rsi_ent.text, rsi_ent.label_, rsi_ent._.rse_id)
new_ents.append(rsi_ent)
doc.ents = new_ents
return doc
nlp.add_pipe("spatial_pipeline", after="ner")
def extract_spatial_entities(text):
doc = nlp(text)
# 分句处理
sent_ents = []
sent_texts = []
sent_rse_id = []
offset = 0 # 记录当前 token 偏移量
sent_start_positions = [0] # 记录句子信息
doc_copy = doc.copy() # 用于展示方程组合
for sent in doc.sents:
sent_doc = nlp(sent.text) # 逐句处理
sent_doc = set_selected_entities(sent_doc) # 这里处理实体
sent_texts.append(sent_doc.text)
for ent in sent_doc.ents:
sent_rse_id.append(ent._.rse_id)
# **调整每个实体的索引,使其匹配完整文本**
for ent in sent_doc.ents:
new_ent = Span(doc, ent.start + offset, ent.end + offset, label=ent.label_)
sent_ents.append(new_ent)
offset += len(sent) # 更新偏移量
sent_start_positions.append(sent_start_positions[-1] + len(sent)) # 记录句子起点
# **创建新 Doc**
final_doc = Doc(nlp.vocab, words=[token.text for token in doc], spaces=[token.whitespace_ for token in doc])
for i in sent_start_positions: # 手动标记句子起始点
if i < len(final_doc):
final_doc[i].is_sent_start = True
# **设置实体**
final_doc.set_ents(sent_ents)
for i in range(len(sent_rse_id)):
final_doc.ents[i]._.rse_id = sent_rse_id[i]
doc = final_doc
ents_ext = []
for ent in doc.ents:
ents_ext.append({
"start": ent.start_char,
"end": ent.end_char,
"label": ent.label_,
"rse_id": ent._.rse_id # ✅ 加入扩展字段
})
return {
"text": doc.text,
"ents": [{"start": ent.start_char, "end": ent.end_char, "label": ent.label_} for ent in doc.ents],
"tokens": [{"id": i, "start": token.idx, "end": token.idx + len(token)} for i, token in enumerate(doc)],
"ents_ext": ents_ext # ✅ 添加扩展字段
}
def process_api(input_text):
# 这里编写实际的后端处理逻辑
# return {
# "status": "success",
# # "result": f"Processed: {input_text.upper()}",
# # "result": f"Processed: {nlp(input_text).to_json()}",
# "result": f"Processed: {extract_spatial_entities(input_text)}",
# "timestamp": time.time()
# }
return extract_spatial_entities(input_text)
# 设置API格式为JSON
gr.Interface(
fn=process_api,
inputs="text",
outputs="json",
title="Backend API",
allow_flagging="never"
).launch()