Spaces:
Running
Running
File size: 8,275 Bytes
aa48222 c9c01b7 bd710a8 b2c2ee0 2b79b4e aa48222 2b79b4e e22c7fc fe690f8 2b79b4e fe690f8 2b79b4e 6107bcc 2b79b4e c07d705 2b79b4e e22c7fc 4b6e8f7 444aed6 fb2d59a e22c7fc 2b79b4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# import gradio as gr
# import time # 模拟处理耗时
# import os
# import spacy
# from spacy import displacy
# import pandas as pd
# nlp = spacy.load("en_core_web_md")
# def process_api(input_text):
# # 这里编写实际的后端处理逻辑
# return {
# "status": "success",
# # "result": f"Processed: {input_text.upper()}",
# "result": f"Processed: {nlp(input_text).to_json()}",
# "timestamp": time.time()
# }
# # 设置API格式为JSON
# gr.Interface(
# fn=process_api,
# inputs="text",
# outputs="json",
# title="Backend API",
# allow_flagging="never"
# ).launch()
import gradio as gr
import time
import spacy
from spacy.tokens import Span, Doc, Token
from spacy.language import Language
import llm_ent_extract
import regex_spatial
import re
colors = {'GPE': "#43c6fc", "LOC": "#fd9720", "RSE":"#a6e22d"}
options = {"ents": ['GPE', 'LOC', "RSE"], "colors": colors}
HTML_WRAPPER = """<div style="overflow-x: auto; border: none solid #a6e22d; border-radius: 0.25rem; padding: 1rem">{}</div>"""
BASE_URL = ""
model = ""
types = ""
nlp = spacy.load("en_core_web_md")
gpe_selected = 'GPE'
loc_selected = 'loc'
rse_selected = 'rse'
rse_id = "rse_id"
def set_selected_entities(doc):
global gpe_selected, loc_selected, rse_selected, model
ents = [ent for ent in doc.ents if ent.label_ == gpe_selected or ent.label_ == loc_selected or ent.label_ == rse_selected]
doc.ents = ents
return doc
def update_entities(doc, entity_texts, replace=True):
"""
根据给定的文本内容标注实体,并直接修改 doc.ents。
:param doc: spaCy 解析后的 Doc 对象
:param entity_texts: 字典,键是要标注的实体文本,值是对应的实体类别
:param replace: 布尔值,True 则替换现有实体,False 则保留现有实体并添加新的
"""
new_ents = list(doc.ents) if not replace else [] # 如果 replace=False,保留已有实体
for ent_text, ent_label in entity_texts.items():
start = doc.text.find(ent_text) # 在全文中查找文本位置
if start != -1:
start_token = len(doc.text[:start].split()) # 计算起始 token 索引
end_token = start_token + len(ent_text.split()) # 计算结束 token 索引
if start_token < len(doc) and end_token <= len(doc): # 确保索引不越界
new_ent = Span(doc, start_token, end_token, label=ent_label)
new_ents.append(new_ent)
doc.set_ents(new_ents) # 更新 doc.ents
def find_ent_by_regex(doc, sentence, ent, regex):
global id
if id == "":
id = ent.text
for match in re.finditer(regex, doc.text):
start, end = match.span()
if(start>= sentence.start_char and start<= sentence.end_char):
span = doc.char_span(start, end)
if span is not None:
id = span.text +"_"+ id
if(start > ent.end_char):
ent.end_char = end
else:
ent.start_char = start
return ent
return ent
def set_extension():
Span.set_extension(rse_id, default="", force=True)
Doc.set_extension(rse_id, default="", force=True)
Token.set_extension(rse_id, default="", force=True)
def get_level1(doc, sentence, ent):
return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level1_regex())
def get_level2(doc, sentence, ent):
return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level2_regex())
def get_level3(doc, sentence, ent):
return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level3_regex())
def get_relative_entity(doc, sentence, ent):
global id
id = ""
rel_entity = get_level1(doc, sentence, ent)
# print(1111 ,rel_entity)
rel_entity = get_level2(doc, sentence, rel_entity)
# print(2222 ,rel_entity)
rel_entity = get_level3(doc, sentence, rel_entity)
# print(3333 ,rel_entity)
if("_" in id):
rel_entity = doc.char_span(rel_entity.start_char, rel_entity.end_char, "RSE")
rel_entity._.rse_id = id
# print(id, 'idid')
# print(rel_entity._.rse_id, '._._')
return rel_entity
rel_entity = doc.char_span(ent.start_char, ent.end_char, ent.label_)
rel_entity._.rse_id = id
# print(4444 ,rel_entity)
return rel_entity
@Language.component("spatial_pipeline")
def get_spatial_ent(doc):
set_extension()
new_ents = []
# ents = [ent for ent in doc.ents if ent.label_ == "GPE" or ent.label_ == "LOC"] # 筛选出ase
# LLM 输出
# GPE = '[###Pyrmont###, ###Glebe###]' # LLM 输出的实体
GPE = llm_ent_extract.extract_GPE(doc.text) # LLM 输出的实体
print(doc.text, 'llmin')
print(GPE, 'llout')
GPE = llm_ent_extract.extract(GPE, 'GPE')
print(GPE, 'llmout2')
update_entities(doc, GPE, True)
ents = doc.ents
print(ents, 'eee')
end = None
for ent in ents:
if ent.end != len(doc):
next_token = doc[ent.end]
if end is not None:
start = end
else:
start = ent.sent.start
if next_token.text.lower() in regex_spatial.get_keywords():
end = next_token.i
else:
end = ent.end
else:
start = ent.sent.start
end = ent.end
# print(doc, '//',start, '//', end, 999888)
# print(doc[start],'//', doc[end])
# print(ents, 999)
rsi_ent = get_relative_entity(doc,Span(doc, start, end), ent)
# print(doc.ents[0]._.rse_id, '._._2')
# print(rsi_ent.text, rsi_ent.label_, rsi_ent._.rse_id)
new_ents.append(rsi_ent)
doc.ents = new_ents
return doc
nlp.add_pipe("spatial_pipeline", after="ner")
def extract_spatial_entities(text):
doc = nlp(text)
# 分句处理
sent_ents = []
sent_texts = []
sent_rse_id = []
offset = 0 # 记录当前 token 偏移量
sent_start_positions = [0] # 记录句子信息
doc_copy = doc.copy() # 用于展示方程组合
for sent in doc.sents:
sent_doc = nlp(sent.text) # 逐句处理
sent_doc = set_selected_entities(sent_doc) # 这里处理实体
sent_texts.append(sent_doc.text)
for ent in sent_doc.ents:
sent_rse_id.append(ent._.rse_id)
# **调整每个实体的索引,使其匹配完整文本**
for ent in sent_doc.ents:
new_ent = Span(doc, ent.start + offset, ent.end + offset, label=ent.label_)
sent_ents.append(new_ent)
offset += len(sent) # 更新偏移量
sent_start_positions.append(sent_start_positions[-1] + len(sent)) # 记录句子起点
# **创建新 Doc**
final_doc = Doc(nlp.vocab, words=[token.text for token in doc], spaces=[token.whitespace_ for token in doc])
for i in sent_start_positions: # 手动标记句子起始点
if i < len(final_doc):
final_doc[i].is_sent_start = True
# **设置实体**
final_doc.set_ents(sent_ents)
for i in range(len(sent_rse_id)):
final_doc.ents[i]._.rse_id = sent_rse_id[i]
doc = final_doc
ents_ext = []
for ent in doc.ents:
ents_ext.append({
"start": ent.start_char,
"end": ent.end_char,
"label": ent.label_,
"rse_id": ent._.rse_id # ✅ 加入扩展字段
})
return {
"text": doc.text,
"ents": [{"start": ent.start_char, "end": ent.end_char, "label": ent.label_} for ent in doc.ents],
"tokens": [{"id": i, "start": token.idx, "end": token.idx + len(token)} for i, token in enumerate(doc)],
"ents_ext": ents_ext # ✅ 添加扩展字段
}
def process_api(input_text):
# 这里编写实际的后端处理逻辑
# return {
# "status": "success",
# # "result": f"Processed: {input_text.upper()}",
# # "result": f"Processed: {nlp(input_text).to_json()}",
# "result": f"Processed: {extract_spatial_entities(input_text)}",
# "timestamp": time.time()
# }
return extract_spatial_entities(input_text)
# 设置API格式为JSON
gr.Interface(
fn=process_api,
inputs="text",
outputs="json",
title="Backend API",
allow_flagging="never"
).launch() |