Spaces:
Running
Running
import gradio as gr | |
import time # 模拟处理耗时 | |
nlp = spacy.load("en_core_web_md") | |
def process_api(input_text): | |
# 这里编写实际的后端处理逻辑 | |
return { | |
"status": "success", | |
"result": f"Processed: {input_text.upper()}", | |
"timestamp": time.time() | |
} | |
# 设置API格式为JSON | |
gr.Interface( | |
fn=process_api, | |
inputs="text", | |
outputs="json", | |
title="Backend API", | |
allow_flagging="never" | |
).launch() | |
# import gradio as gr | |
# import spacy | |
# from spacy import displacy | |
# import pandas as pd | |
# import time | |
# nlp = spacy.load("en_core_web_md") | |
# HTML_WRAPPER = "<div style='padding: 10px;'>{}</div>" | |
# def show_spatial_ent_table(doc): | |
# rows = [] | |
# for i, ent in enumerate(doc.ents): | |
# rows.append(f"<tr><td>{i+1}</td><td>{ent.text}</td><td>{ent.label_}</td></tr>") | |
# table_html = "<table border='1'><tr><th>Index</th><th>Entity</th><th>Label</th></tr>" + "".join(rows) + "</table>" | |
# return table_html | |
# def process_api(input_text): | |
# doc = nlp(input_text) | |
# html_ent = displacy.render(doc, style="ent") | |
# html_ent = HTML_WRAPPER.format(html_ent.replace("\n", "")) | |
# html_table = show_spatial_ent_table(doc) | |
# final_html = html_ent + "<br>" + html_table | |
# return { | |
# "data": [{"html": final_html}], | |
# "timestamp": time.time() | |
# } | |
# gr.Interface( | |
# fn=process_api, | |
# inputs="text", | |
# outputs="json", | |
# allow_flagging="never", | |
# title="Backend API" | |
# ).launch() | |