import gradio as gr import time # 模拟处理耗时 nlp = spacy.load("en_core_web_md") def process_api(input_text): # 这里编写实际的后端处理逻辑 return { "status": "success", "result": f"Processed: {input_text.upper()}", "timestamp": time.time() } # 设置API格式为JSON gr.Interface( fn=process_api, inputs="text", outputs="json", title="Backend API", allow_flagging="never" ).launch() # import gradio as gr # import spacy # from spacy import displacy # import pandas as pd # import time # nlp = spacy.load("en_core_web_md") # HTML_WRAPPER = "
{}
" # def show_spatial_ent_table(doc): # rows = [] # for i, ent in enumerate(doc.ents): # rows.append(f"{i+1}{ent.text}{ent.label_}") # table_html = "" + "".join(rows) + "
IndexEntityLabel
" # return table_html # def process_api(input_text): # doc = nlp(input_text) # html_ent = displacy.render(doc, style="ent") # html_ent = HTML_WRAPPER.format(html_ent.replace("\n", "")) # html_table = show_spatial_ent_table(doc) # final_html = html_ent + "
" + html_table # return { # "data": [{"html": final_html}], # "timestamp": time.time() # } # gr.Interface( # fn=process_api, # inputs="text", # outputs="json", # allow_flagging="never", # title="Backend API" # ).launch()