Spaces:
Runtime error
Runtime error
# 这不会失败 | |
import subprocess | |
subprocess.run(["pip", "install", "streamlit"]) | |
import streamlit | |
# import subprocess | |
# import importlib.util | |
# import os | |
# # 只在 geospacy 没有被安装时执行安装(避免重复装) | |
# if importlib.util.find_spec("geospacy") is None: | |
# subprocess.run( | |
# ["pip", "install", "--no-deps", "-r", "requirements_geospacy.txt"], | |
# check=True | |
# ) | |
# import streamlit as st | |
# from spacy import displacy | |
# import spacy | |
# import geospacy | |
# from PIL import Image | |
# import base64 | |
# import sys | |
# import pandas as pd | |
# import en_core_web_md | |
# from spacy.tokens import Span, Doc, Token | |
# from utils import geoutil | |
# import llm_coding | |
# import urllib.parse | |
# colors = {'GPE': "#43c6fc", "LOC": "#fd9720", "RSE":"#a6e22d"} | |
# options = {"ents": ['GPE', 'LOC', "RSE"], "colors": colors} | |
# HTML_WRAPPER = """<div style="overflow-x: auto; border: none solid #a6e22d; border-radius: 0.25rem; padding: 1rem">{}</div>""" | |
# model = "" | |
# gpe_selected = "GPE" | |
# loc_selected = "LOC" | |
# rse_selected = "RSE" | |
# types = "" | |
# #BASE_URL = "http://localhost:8080/" | |
# BASE_URL = "" | |
# def set_header(): | |
# LOGO_IMAGE = "tetis-1.png" | |
# st.markdown( | |
# """ | |
# <style> | |
# .container { | |
# display: flex; | |
# } | |
# .logo-text { | |
# font-weight:700 !important; | |
# font-size:50px !important; | |
# color: #f9a01b !important; | |
# padding-left: 10px !important; | |
# } | |
# .logo-img { | |
# float:right; | |
# width: 28%; | |
# height: 28%; | |
# } | |
# </style> | |
# """, | |
# unsafe_allow_html=True | |
# ) | |
# st.markdown( | |
# f""" | |
# <div class="container"> | |
# <img class="logo-img" src="data:image/png;base64,{base64.b64encode(open(LOGO_IMAGE, "rb").read()).decode()}"> | |
# <p class="logo-text">GeOspaCy</p> | |
# </div> | |
# """, | |
# unsafe_allow_html=True | |
# ) | |
# def set_side_menu(): | |
# global gpe_selected, loc_selected, rse_selected, model, types | |
# types ="" | |
# params = st.experimental_get_query_params() | |
# # params = st.query_params | |
# # print(params, 777) | |
# st.sidebar.markdown("## Spacy Model") | |
# st.sidebar.markdown("You can **select** the values of the *spacy model* from Dropdown.") | |
# models = ['en_core_web_sm', 'en_core_web_md', 'en_core_web_lg', 'en_core_web_trf'] | |
# if "model" in params: | |
# default_ix = models.index(params["model"][0]) | |
# else: | |
# default_ix = models.index('en_core_web_sm') | |
# model = st.sidebar.selectbox('Spacy Model',models, index=default_ix) | |
# st.sidebar.markdown("## Spatial Entity Labels") | |
# st.sidebar.markdown("**Mark** the Spatial Entities you want to extract?") | |
# tpes = "" | |
# if "type" in params: | |
# tpes = params['type'][0] | |
# if "g" in tpes: | |
# gpe = st.sidebar.checkbox('GPE', value = True) | |
# else: | |
# gpe = st.sidebar.checkbox('GPE') | |
# if "l" in tpes: | |
# loc = st.sidebar.checkbox('LOC', value = True) | |
# else: | |
# loc = st.sidebar.checkbox('LOC') | |
# if "r" in tpes: | |
# rse = st.sidebar.checkbox('RSE', value = True) | |
# else: | |
# rse = st.sidebar.checkbox('RSE') | |
# if(gpe): | |
# gpe_selected ="GPE" | |
# types+="g" | |
# if(loc): | |
# loc_selected ="LOC" | |
# types+="l" | |
# if(rse): | |
# rse_selected ="RSE" | |
# types+="r" | |
# def set_input(): | |
# params = st.experimental_get_query_params() | |
# # params = st.query_params | |
# if "text" not in params: | |
# text = st.text_area("Input unstructured text:", "") | |
# else: | |
# text = st.text_area("Enter the text to extract {Spatial Entities}", params["text"][0]) | |
# if(st.button("Extract")): | |
# # return 'France has detected a highly pathogenic strain of bird flu in a pet shop near Paris, days after an identical outbreak in one of Corsica’s main cities.' | |
# return 'I would like to know where is the area between Burwood and Glebe. Pyrmont.' | |
# return '5 km east of Burwood. 3 km south of Glebe. Between Pyrmont and Glebe.' | |
# # return 'Between Burwood and Pyrmont.' | |
# # return 'Between Burwood and Glebe.' | |
# # return 'Between Burwood and Darling Harbour.' | |
# # return 'Between China and USA.' | |
# # return 'The Burwood city.' | |
# # text = "New York is north of Washington. Between Burwood and Pyrmont city." | |
# return text | |
# def set_selected_entities(doc): | |
# global gpe_selected, loc_selected, rse_selected, model | |
# ents = [ent for ent in doc.ents if ent.label_ == gpe_selected or ent.label_ == loc_selected or ent.label_ == rse_selected] | |
# doc.ents = ents | |
# return doc | |
# def extract_spatial_entities(text): | |
# # nlp = en_core_web_md.load() | |
# # nlp = spacy.load("en_core_web_md") | |
# # nlp.add_pipe("spatial_pipeline", after="ner") | |
# # doc = nlp(text) | |
# # doc = set_selected_entities(doc) | |
# # html = displacy.render(doc, style="ent", options=options) | |
# # html = html.replace("\n", "") | |
# # st.write(HTML_WRAPPER.format(html), unsafe_allow_html=True) | |
# # show_spatial_ent_table(doc, text) | |
# nlp = spacy.load("en_core_web_md") ##### | |
# nlp.add_pipe("spatial_pipeline", after="ner") | |
# doc = nlp(text) | |
# # 分句处理 | |
# sent_ents = [] | |
# sent_texts = [] | |
# sent_rse_id = [] | |
# offset = 0 # 记录当前 token 偏移量 | |
# sent_start_positions = [0] # 记录句子信息 | |
# doc_copy = doc.copy() # 用于展示方程组合 | |
# for sent in doc.sents: | |
# sent_doc = nlp(sent.text) # 逐句处理 | |
# sent_doc = set_selected_entities(sent_doc) # 这里处理实体 | |
# sent_texts.append(sent_doc.text) | |
# for ent in sent_doc.ents: | |
# sent_rse_id.append(ent._.rse_id) | |
# # **调整每个实体的索引,使其匹配完整文本** | |
# for ent in sent_doc.ents: | |
# new_ent = Span(doc, ent.start + offset, ent.end + offset, label=ent.label_) | |
# sent_ents.append(new_ent) | |
# offset += len(sent) # 更新偏移量 | |
# sent_start_positions.append(sent_start_positions[-1] + len(sent)) # 记录句子起点 | |
# # **创建新 Doc** | |
# final_doc = Doc(nlp.vocab, words=[token.text for token in doc], spaces=[token.whitespace_ for token in doc]) | |
# for i in sent_start_positions: # 手动标记句子起始点 | |
# if i < len(final_doc): | |
# final_doc[i].is_sent_start = True | |
# # **设置实体** | |
# final_doc.set_ents(sent_ents) | |
# for i in range(len(sent_rse_id)): | |
# final_doc.ents[i]._.rse_id = sent_rse_id[i] | |
# print(doc.ents[0].sent, '原始') | |
# doc = final_doc | |
# print(doc.ents[0].sent, '新') | |
# # 分句处理完毕 | |
# # doc = set_selected_entities(doc) | |
# doc.to_disk("saved_doc.spacy") | |
# html = displacy.render(doc,style="ent", options = options) | |
# html = html.replace("\n","") | |
# st.write(HTML_WRAPPER.format(html),unsafe_allow_html=True) | |
# show_spatial_ent_table(doc, text) | |
# st.markdown("123123") | |
# show_sentence_selector_table(doc_copy) | |
# def show_sentence_selector_table(doc_copy): | |
# st.markdown("**______________________________________________________________________________________**") | |
# st.markdown("**Sentence Selector for Geographic Composition**") | |
# # 提取句子 | |
# sentences = list(doc_copy.sents) | |
# # 构建表格数据 | |
# rows = [] | |
# for idx, sent in enumerate(sentences): | |
# sentence_text = sent.text.strip() | |
# # 生成跳转链接(定位到Tagger) | |
# url = BASE_URL + "Tagger?mode=geocombo&text=" + urllib.parse.quote(sentence_text) | |
# new_row = { | |
# 'Sr.': idx + 1, | |
# 'sentence': sentence_text, | |
# 'Select': f'<a target="_self" href="{url}">Select this sentence</a>' | |
# } | |
# rows.append(new_row) | |
# # 转为 DataFrame 并渲染为 HTML | |
# df = pd.DataFrame(rows) | |
# st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True) | |
# def show_spatial_ent_table(doc, text): | |
# global types | |
# if len(doc.ents) > 0: | |
# st.markdown("**______________________________________________________________________________________**") | |
# st.markdown("**Spatial Entities List**") | |
# # 初始化一个空 DataFrame | |
# df = pd.DataFrame(columns=['Sr.', 'entity', 'label', 'Map', 'GEOJson']) | |
# rows = [] # 用于存储所有行 | |
# for ent in doc.ents: | |
# url_map = BASE_URL + "Tagger?map=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id | |
# print(url_map, 'uuurrr') | |
# print(ent._.rse_id, 'pppp') | |
# url_json = BASE_URL + "Tagger?geojson=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id | |
# # 创建新行 | |
# new_row = { | |
# 'Sr.': len(rows) + 1, | |
# 'entity': ent.text, | |
# 'label': ent.label_, | |
# 'Map': f'<a target="_self" href="{url_map}">View</a>', | |
# 'GEOJson': f'<a target="_self" href="{url_json}">View</a>' | |
# } | |
# rows.append(new_row) # 将新行添加到列表中 | |
# # 将所有行转为 DataFrame | |
# df = pd.DataFrame(rows) | |
# # 使用 Streamlit 显示 HTML 表格 | |
# st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True) | |
# # params = st.experimental_get_query_params() | |
# # params = st.query_params | |
# # ase, level_1, level_2, level_3 = geoutil.get_ent(params["entity"][0]) | |
# # print(geoutil.get_ent(params), 'ppppp') | |
# def set_header(): # tetis Geospacy LOGO | |
# LOGO_IMAGE = "title.jpg" | |
# st.markdown( | |
# """ | |
# <style> | |
# .container { | |
# display: flex; | |
# } | |
# .logo-text { | |
# font-weight:700 !important; | |
# font-size:50px !important; | |
# color: #52aee3 !important; | |
# padding-left: 10px !important; | |
# } | |
# .logo-img { | |
# float:right; | |
# width: 10%; | |
# height: 10%; | |
# } | |
# </style> | |
# """, | |
# unsafe_allow_html=True | |
# ) | |
# st.markdown( | |
# f""" | |
# <div class="container"> | |
# <img class="logo-img" src="data:image/png;base64,{base64.b64encode(open(LOGO_IMAGE, "rb").read()).decode()}"> | |
# <p class="logo-text">SpatialParse</p> | |
# </div> | |
# """, | |
# unsafe_allow_html=True | |
# ) | |
# def set_side_menu(): | |
# global gpe_selected, loc_selected, rse_selected, model, types | |
# types = "" | |
# params = st.experimental_get_query_params() | |
# st.sidebar.markdown("## Deployment Method") | |
# st.sidebar.markdown("You can select the deployment method for the model.") | |
# deployment_options = ["API", "Local deployment"] | |
# use_local_model = st.sidebar.radio("Choose deployment method:", deployment_options, index=0) == "Local deployment" | |
# if use_local_model: | |
# local_model_path = st.sidebar.text_input("Enter local model path:", "") | |
# st.sidebar.markdown("## LLM Model") | |
# st.sidebar.markdown("You can **select** different *LLM model* powered by API.") | |
# models = ['Llama-3-8B', 'Mistral-7B-0.3', 'Gemma-2-10B', 'GPT-4o', 'Gemini Pro', 'Deepseek-R1', 'en_core_web_sm', 'en_core_web_md', 'en_core_web_lg', 'en_core_web_trf'] | |
# if "model" in params: | |
# default_ix = models.index(params["model"][0]) | |
# else: | |
# default_ix = models.index('GPT-4o') | |
# model = st.sidebar.selectbox('LLM Model', models, index=default_ix) | |
# st.sidebar.markdown("## Spatial Entity Labels") | |
# st.sidebar.markdown("Please **Mark** the Spatial Entities you want to extract.") | |
# tpes = "" | |
# if "type" in params: | |
# tpes = params['type'][0] | |
# st.sidebar.markdown("### Absolute Spatial Entity:") | |
# if "g" in tpes: | |
# gpe = st.sidebar.checkbox('GPE', value=True) | |
# else: | |
# gpe = st.sidebar.checkbox('GPE') | |
# if "l" in tpes: | |
# loc = st.sidebar.checkbox('LOC', value=True) | |
# else: | |
# loc = st.sidebar.checkbox('LOC') | |
# st.sidebar.markdown("### Relative Spatial Entity:") | |
# if "r" in tpes: | |
# rse = st.sidebar.checkbox('RSE', value=True) | |
# else: | |
# rse = st.sidebar.checkbox('RSE') | |
# if (gpe): | |
# gpe_selected = "GPE" | |
# types += "g" | |
# if (loc): | |
# loc_selected = "LOC" | |
# types += "l" | |
# if (rse): | |
# rse_selected = "RSE" | |
# types += "r" | |
# def main(): | |
# global gpe_selected, loc_selected, rse_selected, model | |
# #print(displacy.templates.TPL_ENT) | |
# set_header() | |
# set_side_menu() | |
# text = set_input() | |
# if(text is not None): | |
# extract_spatial_entities(text) | |
# elif "text" in st.session_state: | |
# text = st.session_state.text | |
# extract_spatial_entities(text) | |
# if __name__ == '__main__': | |
# main() | |