Spaces:
Runtime error
Runtime error
File size: 13,314 Bytes
17e77ea da5875f d37cd2b f379090 da5875f 17e77ea da5875f 17e77ea da5875f 17e77ea da5875f 17e77ea da5875f 17e77ea da5875f 17e77ea da5875f 17e77ea da5875f 17e77ea da5875f 17e77ea da5875f 17e77ea da5875f 17e77ea da5875f 17e77ea da5875f 17e77ea da5875f 17e77ea da5875f 17e77ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
# 这不会失败
import subprocess
subprocess.run(["pip", "install", "streamlit"])
import streamlit
# import subprocess
# import importlib.util
# import os
# # 只在 geospacy 没有被安装时执行安装(避免重复装)
# if importlib.util.find_spec("geospacy") is None:
# subprocess.run(
# ["pip", "install", "--no-deps", "-r", "requirements_geospacy.txt"],
# check=True
# )
# import streamlit as st
# from spacy import displacy
# import spacy
# import geospacy
# from PIL import Image
# import base64
# import sys
# import pandas as pd
# import en_core_web_md
# from spacy.tokens import Span, Doc, Token
# from utils import geoutil
# import llm_coding
# import urllib.parse
# colors = {'GPE': "#43c6fc", "LOC": "#fd9720", "RSE":"#a6e22d"}
# options = {"ents": ['GPE', 'LOC', "RSE"], "colors": colors}
# HTML_WRAPPER = """<div style="overflow-x: auto; border: none solid #a6e22d; border-radius: 0.25rem; padding: 1rem">{}</div>"""
# model = ""
# gpe_selected = "GPE"
# loc_selected = "LOC"
# rse_selected = "RSE"
# types = ""
# #BASE_URL = "http://localhost:8080/"
# BASE_URL = ""
# def set_header():
# LOGO_IMAGE = "tetis-1.png"
# st.markdown(
# """
# <style>
# .container {
# display: flex;
# }
# .logo-text {
# font-weight:700 !important;
# font-size:50px !important;
# color: #f9a01b !important;
# padding-left: 10px !important;
# }
# .logo-img {
# float:right;
# width: 28%;
# height: 28%;
# }
# </style>
# """,
# unsafe_allow_html=True
# )
# st.markdown(
# f"""
# <div class="container">
# <img class="logo-img" src="data:image/png;base64,{base64.b64encode(open(LOGO_IMAGE, "rb").read()).decode()}">
# <p class="logo-text">GeOspaCy</p>
# </div>
# """,
# unsafe_allow_html=True
# )
# def set_side_menu():
# global gpe_selected, loc_selected, rse_selected, model, types
# types =""
# params = st.experimental_get_query_params()
# # params = st.query_params
# # print(params, 777)
# st.sidebar.markdown("## Spacy Model")
# st.sidebar.markdown("You can **select** the values of the *spacy model* from Dropdown.")
# models = ['en_core_web_sm', 'en_core_web_md', 'en_core_web_lg', 'en_core_web_trf']
# if "model" in params:
# default_ix = models.index(params["model"][0])
# else:
# default_ix = models.index('en_core_web_sm')
# model = st.sidebar.selectbox('Spacy Model',models, index=default_ix)
# st.sidebar.markdown("## Spatial Entity Labels")
# st.sidebar.markdown("**Mark** the Spatial Entities you want to extract?")
# tpes = ""
# if "type" in params:
# tpes = params['type'][0]
# if "g" in tpes:
# gpe = st.sidebar.checkbox('GPE', value = True)
# else:
# gpe = st.sidebar.checkbox('GPE')
# if "l" in tpes:
# loc = st.sidebar.checkbox('LOC', value = True)
# else:
# loc = st.sidebar.checkbox('LOC')
# if "r" in tpes:
# rse = st.sidebar.checkbox('RSE', value = True)
# else:
# rse = st.sidebar.checkbox('RSE')
# if(gpe):
# gpe_selected ="GPE"
# types+="g"
# if(loc):
# loc_selected ="LOC"
# types+="l"
# if(rse):
# rse_selected ="RSE"
# types+="r"
# def set_input():
# params = st.experimental_get_query_params()
# # params = st.query_params
# if "text" not in params:
# text = st.text_area("Input unstructured text:", "")
# else:
# text = st.text_area("Enter the text to extract {Spatial Entities}", params["text"][0])
# if(st.button("Extract")):
# # return 'France has detected a highly pathogenic strain of bird flu in a pet shop near Paris, days after an identical outbreak in one of Corsica’s main cities.'
# return 'I would like to know where is the area between Burwood and Glebe. Pyrmont.'
# return '5 km east of Burwood. 3 km south of Glebe. Between Pyrmont and Glebe.'
# # return 'Between Burwood and Pyrmont.'
# # return 'Between Burwood and Glebe.'
# # return 'Between Burwood and Darling Harbour.'
# # return 'Between China and USA.'
# # return 'The Burwood city.'
# # text = "New York is north of Washington. Between Burwood and Pyrmont city."
# return text
# def set_selected_entities(doc):
# global gpe_selected, loc_selected, rse_selected, model
# ents = [ent for ent in doc.ents if ent.label_ == gpe_selected or ent.label_ == loc_selected or ent.label_ == rse_selected]
# doc.ents = ents
# return doc
# def extract_spatial_entities(text):
# # nlp = en_core_web_md.load()
# # nlp = spacy.load("en_core_web_md")
# # nlp.add_pipe("spatial_pipeline", after="ner")
# # doc = nlp(text)
# # doc = set_selected_entities(doc)
# # html = displacy.render(doc, style="ent", options=options)
# # html = html.replace("\n", "")
# # st.write(HTML_WRAPPER.format(html), unsafe_allow_html=True)
# # show_spatial_ent_table(doc, text)
# nlp = spacy.load("en_core_web_md") #####
# nlp.add_pipe("spatial_pipeline", after="ner")
# doc = nlp(text)
# # 分句处理
# sent_ents = []
# sent_texts = []
# sent_rse_id = []
# offset = 0 # 记录当前 token 偏移量
# sent_start_positions = [0] # 记录句子信息
# doc_copy = doc.copy() # 用于展示方程组合
# for sent in doc.sents:
# sent_doc = nlp(sent.text) # 逐句处理
# sent_doc = set_selected_entities(sent_doc) # 这里处理实体
# sent_texts.append(sent_doc.text)
# for ent in sent_doc.ents:
# sent_rse_id.append(ent._.rse_id)
# # **调整每个实体的索引,使其匹配完整文本**
# for ent in sent_doc.ents:
# new_ent = Span(doc, ent.start + offset, ent.end + offset, label=ent.label_)
# sent_ents.append(new_ent)
# offset += len(sent) # 更新偏移量
# sent_start_positions.append(sent_start_positions[-1] + len(sent)) # 记录句子起点
# # **创建新 Doc**
# final_doc = Doc(nlp.vocab, words=[token.text for token in doc], spaces=[token.whitespace_ for token in doc])
# for i in sent_start_positions: # 手动标记句子起始点
# if i < len(final_doc):
# final_doc[i].is_sent_start = True
# # **设置实体**
# final_doc.set_ents(sent_ents)
# for i in range(len(sent_rse_id)):
# final_doc.ents[i]._.rse_id = sent_rse_id[i]
# print(doc.ents[0].sent, '原始')
# doc = final_doc
# print(doc.ents[0].sent, '新')
# # 分句处理完毕
# # doc = set_selected_entities(doc)
# doc.to_disk("saved_doc.spacy")
# html = displacy.render(doc,style="ent", options = options)
# html = html.replace("\n","")
# st.write(HTML_WRAPPER.format(html),unsafe_allow_html=True)
# show_spatial_ent_table(doc, text)
# st.markdown("123123")
# show_sentence_selector_table(doc_copy)
# def show_sentence_selector_table(doc_copy):
# st.markdown("**______________________________________________________________________________________**")
# st.markdown("**Sentence Selector for Geographic Composition**")
# # 提取句子
# sentences = list(doc_copy.sents)
# # 构建表格数据
# rows = []
# for idx, sent in enumerate(sentences):
# sentence_text = sent.text.strip()
# # 生成跳转链接(定位到Tagger)
# url = BASE_URL + "Tagger?mode=geocombo&text=" + urllib.parse.quote(sentence_text)
# new_row = {
# 'Sr.': idx + 1,
# 'sentence': sentence_text,
# 'Select': f'<a target="_self" href="{url}">Select this sentence</a>'
# }
# rows.append(new_row)
# # 转为 DataFrame 并渲染为 HTML
# df = pd.DataFrame(rows)
# st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True)
# def show_spatial_ent_table(doc, text):
# global types
# if len(doc.ents) > 0:
# st.markdown("**______________________________________________________________________________________**")
# st.markdown("**Spatial Entities List**")
# # 初始化一个空 DataFrame
# df = pd.DataFrame(columns=['Sr.', 'entity', 'label', 'Map', 'GEOJson'])
# rows = [] # 用于存储所有行
# for ent in doc.ents:
# url_map = BASE_URL + "Tagger?map=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id
# print(url_map, 'uuurrr')
# print(ent._.rse_id, 'pppp')
# url_json = BASE_URL + "Tagger?geojson=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id
# # 创建新行
# new_row = {
# 'Sr.': len(rows) + 1,
# 'entity': ent.text,
# 'label': ent.label_,
# 'Map': f'<a target="_self" href="{url_map}">View</a>',
# 'GEOJson': f'<a target="_self" href="{url_json}">View</a>'
# }
# rows.append(new_row) # 将新行添加到列表中
# # 将所有行转为 DataFrame
# df = pd.DataFrame(rows)
# # 使用 Streamlit 显示 HTML 表格
# st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True)
# # params = st.experimental_get_query_params()
# # params = st.query_params
# # ase, level_1, level_2, level_3 = geoutil.get_ent(params["entity"][0])
# # print(geoutil.get_ent(params), 'ppppp')
# def set_header(): # tetis Geospacy LOGO
# LOGO_IMAGE = "title.jpg"
# st.markdown(
# """
# <style>
# .container {
# display: flex;
# }
# .logo-text {
# font-weight:700 !important;
# font-size:50px !important;
# color: #52aee3 !important;
# padding-left: 10px !important;
# }
# .logo-img {
# float:right;
# width: 10%;
# height: 10%;
# }
# </style>
# """,
# unsafe_allow_html=True
# )
# st.markdown(
# f"""
# <div class="container">
# <img class="logo-img" src="data:image/png;base64,{base64.b64encode(open(LOGO_IMAGE, "rb").read()).decode()}">
# <p class="logo-text">SpatialParse</p>
# </div>
# """,
# unsafe_allow_html=True
# )
# def set_side_menu():
# global gpe_selected, loc_selected, rse_selected, model, types
# types = ""
# params = st.experimental_get_query_params()
# st.sidebar.markdown("## Deployment Method")
# st.sidebar.markdown("You can select the deployment method for the model.")
# deployment_options = ["API", "Local deployment"]
# use_local_model = st.sidebar.radio("Choose deployment method:", deployment_options, index=0) == "Local deployment"
# if use_local_model:
# local_model_path = st.sidebar.text_input("Enter local model path:", "")
# st.sidebar.markdown("## LLM Model")
# st.sidebar.markdown("You can **select** different *LLM model* powered by API.")
# models = ['Llama-3-8B', 'Mistral-7B-0.3', 'Gemma-2-10B', 'GPT-4o', 'Gemini Pro', 'Deepseek-R1', 'en_core_web_sm', 'en_core_web_md', 'en_core_web_lg', 'en_core_web_trf']
# if "model" in params:
# default_ix = models.index(params["model"][0])
# else:
# default_ix = models.index('GPT-4o')
# model = st.sidebar.selectbox('LLM Model', models, index=default_ix)
# st.sidebar.markdown("## Spatial Entity Labels")
# st.sidebar.markdown("Please **Mark** the Spatial Entities you want to extract.")
# tpes = ""
# if "type" in params:
# tpes = params['type'][0]
# st.sidebar.markdown("### Absolute Spatial Entity:")
# if "g" in tpes:
# gpe = st.sidebar.checkbox('GPE', value=True)
# else:
# gpe = st.sidebar.checkbox('GPE')
# if "l" in tpes:
# loc = st.sidebar.checkbox('LOC', value=True)
# else:
# loc = st.sidebar.checkbox('LOC')
# st.sidebar.markdown("### Relative Spatial Entity:")
# if "r" in tpes:
# rse = st.sidebar.checkbox('RSE', value=True)
# else:
# rse = st.sidebar.checkbox('RSE')
# if (gpe):
# gpe_selected = "GPE"
# types += "g"
# if (loc):
# loc_selected = "LOC"
# types += "l"
# if (rse):
# rse_selected = "RSE"
# types += "r"
# def main():
# global gpe_selected, loc_selected, rse_selected, model
# #print(displacy.templates.TPL_ENT)
# set_header()
# set_side_menu()
# text = set_input()
# if(text is not None):
# extract_spatial_entities(text)
# elif "text" in st.session_state:
# text = st.session_state.text
# extract_spatial_entities(text)
# if __name__ == '__main__':
# main()
|