Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# import numpy as np | |
# import random | |
# # import spaces #[uncomment to use ZeroGPU] | |
# from diffusers import DiffusionPipeline | |
# import torch | |
# device = "cuda" if torch.cuda.is_available() else "cpu" | |
# model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use | |
# if torch.cuda.is_available(): | |
# torch_dtype = torch.float16 | |
# else: | |
# torch_dtype = torch.float32 | |
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
# pipe = pipe.to(device) | |
# MAX_SEED = np.iinfo(np.int32).max | |
# MAX_IMAGE_SIZE = 1024 | |
# # @spaces.GPU #[uncomment to use ZeroGPU] | |
# def infer( | |
# prompt, | |
# negative_prompt, | |
# seed, | |
# randomize_seed, | |
# width, | |
# height, | |
# guidance_scale, | |
# num_inference_steps, | |
# progress=gr.Progress(track_tqdm=True), | |
# ): | |
# if randomize_seed: | |
# seed = random.randint(0, MAX_SEED) | |
# generator = torch.Generator().manual_seed(seed) | |
# image = pipe( | |
# prompt=prompt, | |
# negative_prompt=negative_prompt, | |
# guidance_scale=guidance_scale, | |
# num_inference_steps=num_inference_steps, | |
# width=width, | |
# height=height, | |
# generator=generator, | |
# ).images[0] | |
# return image, seed | |
# examples = [ | |
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
# "An astronaut riding a green horse", | |
# "A delicious ceviche cheesecake slice", | |
# ] | |
# css = """ | |
# #col-container { | |
# margin: 0 auto; | |
# max-width: 640px; | |
# } | |
# """ | |
# with gr.Blocks(css=css) as demo: | |
# with gr.Column(elem_id="col-container"): | |
# gr.Markdown(" # Text-to-Image Gradio Template") | |
# with gr.Row(): | |
# prompt = gr.Text( | |
# label="Prompt", | |
# show_label=False, | |
# max_lines=1, | |
# placeholder="Enter your prompt", | |
# container=False, | |
# ) | |
# run_button = gr.Button("Run", scale=0, variant="primary") | |
# result = gr.Image(label="Result", show_label=False) | |
# with gr.Accordion("Advanced Settings", open=False): | |
# negative_prompt = gr.Text( | |
# label="Negative prompt", | |
# max_lines=1, | |
# placeholder="Enter a negative prompt", | |
# visible=False, | |
# ) | |
# seed = gr.Slider( | |
# label="Seed", | |
# minimum=0, | |
# maximum=MAX_SEED, | |
# step=1, | |
# value=0, | |
# ) | |
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
# with gr.Row(): | |
# width = gr.Slider( | |
# label="Width", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=1024, # Replace with defaults that work for your model | |
# ) | |
# height = gr.Slider( | |
# label="Height", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=1024, # Replace with defaults that work for your model | |
# ) | |
# with gr.Row(): | |
# guidance_scale = gr.Slider( | |
# label="Guidance scale", | |
# minimum=0.0, | |
# maximum=10.0, | |
# step=0.1, | |
# value=0.0, # Replace with defaults that work for your model | |
# ) | |
# num_inference_steps = gr.Slider( | |
# label="Number of inference steps", | |
# minimum=1, | |
# maximum=50, | |
# step=1, | |
# value=2, # Replace with defaults that work for your model | |
# ) | |
# gr.Examples(examples=examples, inputs=[prompt]) | |
# gr.on( | |
# triggers=[run_button.click, prompt.submit], | |
# fn=infer, | |
# inputs=[ | |
# prompt, | |
# negative_prompt, | |
# seed, | |
# randomize_seed, | |
# width, | |
# height, | |
# guidance_scale, | |
# num_inference_steps, | |
# ], | |
# outputs=[result, seed], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch(share=True) | |
import gradio as gr | |
import shutil | |
import os | |
import subprocess | |
import sys | |
# Run the .bat file before launching the app | |
"""try: | |
import PromptTrack | |
except ImportError: | |
print("PromptTrack not found. Installing...") | |
subprocess.run([sys.executable, "-m", "pip", "install", | |
"--index-url", "https://test.pypi.org/simple/", | |
"--extra-index-url", "https://pypi.org/simple/", | |
"PromptTrack"], check=True) | |
subprocess.run([sys.executable, "-m", "pip", "install", | |
"--no-deps", "bytetracker"], check=True) | |
import PromptTrack # Retry import after installation | |
from PromptTrack import PromptTracker | |
tracker = PromptTracker()""" | |
def process_video(video_path, prompt): | |
detection_threshold=0.3 | |
track_thresh=0.4 | |
match_thresh=1 | |
max_time_lost=float("inf") | |
nbr_frames_fixing=800 | |
output_video = video_path.split('mp4')[0]+"_with_id.mp4" # Placeholder for processed video | |
output_file = video_path.split('mp4')[0]+"_mot_.json" # Tracking result | |
output_file_2 = video_path.split('mp4')[0]+"_object_detection.json" # detection results | |
video_file = video_path | |
"""tracker.detect_objects(video_file, prompt=prompt, nms_threshold=0.8, detection_threshold=detection_threshold, detector="OWL-VITV2") | |
tracker.process_mot(video_file, fixed_parc=True, track_thresh=track_thresh, match_thresh=match_thresh, frame_rate=25, max_time_lost=max_time_lost, nbr_frames_fixing=nbr_frames_fixing) | |
tracker.read_video_with_mot(video_file, fps=25)""" | |
output_video = "output.mp4" # Placeholder for processed video | |
output_file = "output.txt" # Placeholder for generated file | |
# Copy the input video to simulate processing | |
shutil.copy(video_path.name, output_video) | |
# Create an output text file with the prompt content | |
with open(output_file, "w") as f: | |
f.write(f"User Prompt: {prompt}\n") | |
return output_video, output_file | |
# Define Gradio interface | |
iface = gr.Interface( | |
fn=process_video, | |
inputs=[gr.File(label="Upload Video"), gr.Textbox(placeholder="Enter your prompt")], | |
outputs=[gr.Video(), gr.File(label="Generated File")], | |
title="Video Processing App", | |
description="Upload a video and enter a prompt. The app will return the processed video and a generated file." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch(share=True) | |
''' | |
import gradio as gr | |
import shutil | |
import os | |
def process_video(video, prompt): | |
output_video = "output.mp4" # Placeholder for processed video | |
output_file = "output.txt" # Placeholder for generated file | |
# Copy the input video to simulate processing | |
shutil.copy(video.name, output_video) | |
# Create an output text file with the prompt content | |
with open(output_file, "w") as f: | |
f.write(f"User Prompt: {prompt}\n") | |
return output_video, output_file | |
# Define Gradio interface | |
iface = gr.Interface( | |
fn=process_video, | |
inputs=[gr.File(label="Upload Video"), gr.Textbox(placeholder="Enter your prompt")], | |
outputs=[gr.Video(), gr.File(label="Generated File")], | |
title="Video Processing App", | |
description="Upload a video and enter a prompt. The app will return the processed video and a generated file." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch(share=True)''' |