Spaces:
Sleeping
Sleeping
File size: 7,785 Bytes
a4c368e 1ad128d a4c368e ac97752 22cc388 a4c368e 4337804 a4c368e 4337804 a4c368e 4337804 a4c368e 4337804 419a2a6 4337804 a4c368e 419a2a6 4337804 a4c368e 22cc388 a4c368e 4337804 22cc388 a4c368e 22cc388 a4c368e 22cc388 287f781 a4c368e 4337804 2dd3506 a4c368e 2dd3506 a4c368e 2dd3506 a4c368e 2dd3506 a4c368e 2dd3506 a4c368e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
# import gradio as gr
# import numpy as np
# import random
# # import spaces #[uncomment to use ZeroGPU]
# from diffusers import DiffusionPipeline
# import torch
# device = "cuda" if torch.cuda.is_available() else "cpu"
# model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
# if torch.cuda.is_available():
# torch_dtype = torch.float16
# else:
# torch_dtype = torch.float32
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
# pipe = pipe.to(device)
# MAX_SEED = np.iinfo(np.int32).max
# MAX_IMAGE_SIZE = 1024
# # @spaces.GPU #[uncomment to use ZeroGPU]
# def infer(
# prompt,
# negative_prompt,
# seed,
# randomize_seed,
# width,
# height,
# guidance_scale,
# num_inference_steps,
# progress=gr.Progress(track_tqdm=True),
# ):
# if randomize_seed:
# seed = random.randint(0, MAX_SEED)
# generator = torch.Generator().manual_seed(seed)
# image = pipe(
# prompt=prompt,
# negative_prompt=negative_prompt,
# guidance_scale=guidance_scale,
# num_inference_steps=num_inference_steps,
# width=width,
# height=height,
# generator=generator,
# ).images[0]
# return image, seed
# examples = [
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
# "An astronaut riding a green horse",
# "A delicious ceviche cheesecake slice",
# ]
# css = """
# #col-container {
# margin: 0 auto;
# max-width: 640px;
# }
# """
# with gr.Blocks(css=css) as demo:
# with gr.Column(elem_id="col-container"):
# gr.Markdown(" # Text-to-Image Gradio Template")
# with gr.Row():
# prompt = gr.Text(
# label="Prompt",
# show_label=False,
# max_lines=1,
# placeholder="Enter your prompt",
# container=False,
# )
# run_button = gr.Button("Run", scale=0, variant="primary")
# result = gr.Image(label="Result", show_label=False)
# with gr.Accordion("Advanced Settings", open=False):
# negative_prompt = gr.Text(
# label="Negative prompt",
# max_lines=1,
# placeholder="Enter a negative prompt",
# visible=False,
# )
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=MAX_SEED,
# step=1,
# value=0,
# )
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# with gr.Row():
# width = gr.Slider(
# label="Width",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=1024, # Replace with defaults that work for your model
# )
# height = gr.Slider(
# label="Height",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=1024, # Replace with defaults that work for your model
# )
# with gr.Row():
# guidance_scale = gr.Slider(
# label="Guidance scale",
# minimum=0.0,
# maximum=10.0,
# step=0.1,
# value=0.0, # Replace with defaults that work for your model
# )
# num_inference_steps = gr.Slider(
# label="Number of inference steps",
# minimum=1,
# maximum=50,
# step=1,
# value=2, # Replace with defaults that work for your model
# )
# gr.Examples(examples=examples, inputs=[prompt])
# gr.on(
# triggers=[run_button.click, prompt.submit],
# fn=infer,
# inputs=[
# prompt,
# negative_prompt,
# seed,
# randomize_seed,
# width,
# height,
# guidance_scale,
# num_inference_steps,
# ],
# outputs=[result, seed],
# )
# if __name__ == "__main__":
# demo.launch(share=True)
import gradio as gr
import shutil
import os
import subprocess
import sys
# Run the .bat file before launching the app
"""try:
import PromptTrack
except ImportError:
print("PromptTrack not found. Installing...")
subprocess.run([sys.executable, "-m", "pip", "install",
"--index-url", "https://test.pypi.org/simple/",
"--extra-index-url", "https://pypi.org/simple/",
"PromptTrack"], check=True)
subprocess.run([sys.executable, "-m", "pip", "install",
"--no-deps", "bytetracker"], check=True)
import PromptTrack # Retry import after installation
from PromptTrack import PromptTracker
tracker = PromptTracker()"""
def process_video(video_path, prompt):
detection_threshold=0.3
track_thresh=0.4
match_thresh=1
max_time_lost=float("inf")
nbr_frames_fixing=800
output_video = video_path.split('mp4')[0]+"_with_id.mp4" # Placeholder for processed video
output_file = video_path.split('mp4')[0]+"_mot_.json" # Tracking result
output_file_2 = video_path.split('mp4')[0]+"_object_detection.json" # detection results
video_file = video_path
"""tracker.detect_objects(video_file, prompt=prompt, nms_threshold=0.8, detection_threshold=detection_threshold, detector="OWL-VITV2")
tracker.process_mot(video_file, fixed_parc=True, track_thresh=track_thresh, match_thresh=match_thresh, frame_rate=25, max_time_lost=max_time_lost, nbr_frames_fixing=nbr_frames_fixing)
tracker.read_video_with_mot(video_file, fps=25)"""
output_video = "output.mp4" # Placeholder for processed video
output_file = "output.txt" # Placeholder for generated file
# Copy the input video to simulate processing
shutil.copy(video_path.name, output_video)
# Create an output text file with the prompt content
with open(output_file, "w") as f:
f.write(f"User Prompt: {prompt}\n")
return output_video, output_file
# Define Gradio interface
iface = gr.Interface(
fn=process_video,
inputs=[gr.File(label="Upload Video"), gr.Textbox(placeholder="Enter your prompt")],
outputs=[gr.Video(), gr.File(label="Generated File")],
title="Video Processing App",
description="Upload a video and enter a prompt. The app will return the processed video and a generated file."
)
# Launch the app
if __name__ == "__main__":
iface.launch(share=True)
'''
import gradio as gr
import shutil
import os
def process_video(video, prompt):
output_video = "output.mp4" # Placeholder for processed video
output_file = "output.txt" # Placeholder for generated file
# Copy the input video to simulate processing
shutil.copy(video.name, output_video)
# Create an output text file with the prompt content
with open(output_file, "w") as f:
f.write(f"User Prompt: {prompt}\n")
return output_video, output_file
# Define Gradio interface
iface = gr.Interface(
fn=process_video,
inputs=[gr.File(label="Upload Video"), gr.Textbox(placeholder="Enter your prompt")],
outputs=[gr.Video(), gr.File(label="Generated File")],
title="Video Processing App",
description="Upload a video and enter a prompt. The app will return the processed video and a generated file."
)
# Launch the app
if __name__ == "__main__":
iface.launch(share=True)''' |