Spaces:
Sleeping
Sleeping
File size: 2,670 Bytes
9fa3f12 a4c368e 03bef47 a4c368e 03bef47 9fa3f12 2cf6d1b a4c368e 9fa3f12 a4c368e 03bef47 a4c368e 03bef47 419a2a6 03bef47 a4c368e 419a2a6 4337804 a4c368e 22cc388 a4c368e 4337804 03bef47 a4c368e 22cc388 a4c368e 22cc388 287f781 a4c368e 4337804 2dd3506 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import spaces
import gradio as gr
import shutil
import os
import subprocess
import sys
# Run the .bat file before launching the app
try:
import PromptTrack
except ImportError:
print("PromptTrack not found. Installing...")
subprocess.run([sys.executable, "-m", "pip", "install",
"--index-url", "https://test.pypi.org/simple/",
"--extra-index-url", "https://pypi.org/simple/",
"PromptTrack"], check=True)
subprocess.run([sys.executable, "-m", "pip", "install",
"--no-deps", "bytetracker"], check=True)
import PromptTrack # Retry import after installation
from PromptTrack import PromptTracker
tracker = PromptTracker()
#@spaces.GPU(duration=300)
def process_video(video_path, prompt):
import torch
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# Tesla T4
detection_threshold=0.3
track_thresh=0.4
match_thresh=1
max_time_lost=float("inf")
nbr_frames_fixing=800
output_video = video_path.split('mp4')[0]+"_with_id.mp4" # Placeholder for processed video
output_file = video_path.split('mp4')[0]+"_mot_.json" # Tracking result
output_file_2 = video_path.split('mp4')[0]+"_object_detection.json" # detection results
video_file = video_path
tracker.detect_objects(video_file, prompt=prompt, nms_threshold=0.8, detection_threshold=detection_threshold, detector="OWL-VITV2")
tracker.process_mot(video_file, fixed_parc=True, track_thresh=track_thresh, match_thresh=match_thresh, frame_rate=25, max_time_lost=max_time_lost, nbr_frames_fixing=nbr_frames_fixing)
tracker.read_video_with_mot(video_file, fps=25)
"""output_video = "output.mp4" # Placeholder for processed video
output_file = "output.txt" # Placeholder for generated file
# Copy the input video to simulate processing
shutil.copy(video_path.name, output_video)
# Create an output text file with the prompt content
with open(output_file, "w") as f:
f.write(f"User Prompt: {prompt}\n")
"""
return output_video, output_file
# Define Gradio interface
iface = gr.Interface(
fn=process_video,
inputs=[gr.File(label="Upload Video"), gr.Textbox(placeholder="Enter your prompt")],
outputs=[gr.Video(), gr.File(label="Generated File")],
title="Video Processing App",
description="Upload a video and enter a prompt. The app will return the processed video and a generated file."
)
# Launch the app
if __name__ == "__main__":
iface.launch(share=True)
|