Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,165 +1,4 @@
|
|
1 |
-
|
2 |
-
# import numpy as np
|
3 |
-
# import random
|
4 |
-
|
5 |
-
# # import spaces #[uncomment to use ZeroGPU]
|
6 |
-
# from diffusers import DiffusionPipeline
|
7 |
-
# import torch
|
8 |
-
|
9 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
# model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
-
|
12 |
-
# if torch.cuda.is_available():
|
13 |
-
# torch_dtype = torch.float16
|
14 |
-
# else:
|
15 |
-
# torch_dtype = torch.float32
|
16 |
-
|
17 |
-
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
-
# pipe = pipe.to(device)
|
19 |
-
|
20 |
-
# MAX_SEED = np.iinfo(np.int32).max
|
21 |
-
# MAX_IMAGE_SIZE = 1024
|
22 |
-
|
23 |
-
|
24 |
-
# # @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
-
# def infer(
|
26 |
-
# prompt,
|
27 |
-
# negative_prompt,
|
28 |
-
# seed,
|
29 |
-
# randomize_seed,
|
30 |
-
# width,
|
31 |
-
# height,
|
32 |
-
# guidance_scale,
|
33 |
-
# num_inference_steps,
|
34 |
-
# progress=gr.Progress(track_tqdm=True),
|
35 |
-
# ):
|
36 |
-
# if randomize_seed:
|
37 |
-
# seed = random.randint(0, MAX_SEED)
|
38 |
-
|
39 |
-
# generator = torch.Generator().manual_seed(seed)
|
40 |
-
|
41 |
-
# image = pipe(
|
42 |
-
# prompt=prompt,
|
43 |
-
# negative_prompt=negative_prompt,
|
44 |
-
# guidance_scale=guidance_scale,
|
45 |
-
# num_inference_steps=num_inference_steps,
|
46 |
-
# width=width,
|
47 |
-
# height=height,
|
48 |
-
# generator=generator,
|
49 |
-
# ).images[0]
|
50 |
-
|
51 |
-
# return image, seed
|
52 |
-
|
53 |
-
|
54 |
-
# examples = [
|
55 |
-
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
# "An astronaut riding a green horse",
|
57 |
-
# "A delicious ceviche cheesecake slice",
|
58 |
-
# ]
|
59 |
-
|
60 |
-
# css = """
|
61 |
-
# #col-container {
|
62 |
-
# margin: 0 auto;
|
63 |
-
# max-width: 640px;
|
64 |
-
# }
|
65 |
-
# """
|
66 |
-
|
67 |
-
# with gr.Blocks(css=css) as demo:
|
68 |
-
# with gr.Column(elem_id="col-container"):
|
69 |
-
# gr.Markdown(" # Text-to-Image Gradio Template")
|
70 |
-
|
71 |
-
# with gr.Row():
|
72 |
-
# prompt = gr.Text(
|
73 |
-
# label="Prompt",
|
74 |
-
# show_label=False,
|
75 |
-
# max_lines=1,
|
76 |
-
# placeholder="Enter your prompt",
|
77 |
-
# container=False,
|
78 |
-
# )
|
79 |
-
|
80 |
-
# run_button = gr.Button("Run", scale=0, variant="primary")
|
81 |
-
|
82 |
-
# result = gr.Image(label="Result", show_label=False)
|
83 |
-
|
84 |
-
# with gr.Accordion("Advanced Settings", open=False):
|
85 |
-
# negative_prompt = gr.Text(
|
86 |
-
# label="Negative prompt",
|
87 |
-
# max_lines=1,
|
88 |
-
# placeholder="Enter a negative prompt",
|
89 |
-
# visible=False,
|
90 |
-
# )
|
91 |
-
|
92 |
-
# seed = gr.Slider(
|
93 |
-
# label="Seed",
|
94 |
-
# minimum=0,
|
95 |
-
# maximum=MAX_SEED,
|
96 |
-
# step=1,
|
97 |
-
# value=0,
|
98 |
-
# )
|
99 |
-
|
100 |
-
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
-
|
102 |
-
# with gr.Row():
|
103 |
-
# width = gr.Slider(
|
104 |
-
# label="Width",
|
105 |
-
# minimum=256,
|
106 |
-
# maximum=MAX_IMAGE_SIZE,
|
107 |
-
# step=32,
|
108 |
-
# value=1024, # Replace with defaults that work for your model
|
109 |
-
# )
|
110 |
-
|
111 |
-
# height = gr.Slider(
|
112 |
-
# label="Height",
|
113 |
-
# minimum=256,
|
114 |
-
# maximum=MAX_IMAGE_SIZE,
|
115 |
-
# step=32,
|
116 |
-
# value=1024, # Replace with defaults that work for your model
|
117 |
-
# )
|
118 |
-
|
119 |
-
# with gr.Row():
|
120 |
-
# guidance_scale = gr.Slider(
|
121 |
-
# label="Guidance scale",
|
122 |
-
# minimum=0.0,
|
123 |
-
# maximum=10.0,
|
124 |
-
# step=0.1,
|
125 |
-
# value=0.0, # Replace with defaults that work for your model
|
126 |
-
# )
|
127 |
-
|
128 |
-
# num_inference_steps = gr.Slider(
|
129 |
-
# label="Number of inference steps",
|
130 |
-
# minimum=1,
|
131 |
-
# maximum=50,
|
132 |
-
# step=1,
|
133 |
-
# value=2, # Replace with defaults that work for your model
|
134 |
-
# )
|
135 |
-
|
136 |
-
# gr.Examples(examples=examples, inputs=[prompt])
|
137 |
-
# gr.on(
|
138 |
-
# triggers=[run_button.click, prompt.submit],
|
139 |
-
# fn=infer,
|
140 |
-
# inputs=[
|
141 |
-
# prompt,
|
142 |
-
# negative_prompt,
|
143 |
-
# seed,
|
144 |
-
# randomize_seed,
|
145 |
-
# width,
|
146 |
-
# height,
|
147 |
-
# guidance_scale,
|
148 |
-
# num_inference_steps,
|
149 |
-
# ],
|
150 |
-
# outputs=[result, seed],
|
151 |
-
# )
|
152 |
-
|
153 |
-
# if __name__ == "__main__":
|
154 |
-
# demo.launch(share=True)
|
155 |
-
|
156 |
-
|
157 |
-
import torch
|
158 |
-
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
159 |
-
# True
|
160 |
-
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
161 |
-
# Tesla T4
|
162 |
-
|
163 |
import gradio as gr
|
164 |
import shutil
|
165 |
import os
|
@@ -181,7 +20,15 @@ except ImportError:
|
|
181 |
|
182 |
from PromptTrack import PromptTracker
|
183 |
tracker = PromptTracker()
|
|
|
|
|
|
|
184 |
def process_video(video_path, prompt):
|
|
|
|
|
|
|
|
|
|
|
185 |
detection_threshold=0.3
|
186 |
track_thresh=0.4
|
187 |
match_thresh=1
|
|
|
1 |
+
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import shutil
|
4 |
import os
|
|
|
20 |
|
21 |
from PromptTrack import PromptTracker
|
22 |
tracker = PromptTracker()
|
23 |
+
|
24 |
+
|
25 |
+
@spaces.GPU(duration=300)
|
26 |
def process_video(video_path, prompt):
|
27 |
+
import torch
|
28 |
+
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
29 |
+
# True
|
30 |
+
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
31 |
+
# Tesla T4
|
32 |
detection_threshold=0.3
|
33 |
track_thresh=0.4
|
34 |
match_thresh=1
|