SophieNgo commited on
Commit
9fa3f12
·
verified ·
1 Parent(s): 32ed015

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -162
app.py CHANGED
@@ -1,165 +1,4 @@
1
- # import gradio as gr
2
- # import numpy as np
3
- # import random
4
-
5
- # # import spaces #[uncomment to use ZeroGPU]
6
- # from diffusers import DiffusionPipeline
7
- # import torch
8
-
9
- # device = "cuda" if torch.cuda.is_available() else "cpu"
10
- # model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- # if torch.cuda.is_available():
13
- # torch_dtype = torch.float16
14
- # else:
15
- # torch_dtype = torch.float32
16
-
17
- # pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- # pipe = pipe.to(device)
19
-
20
- # MAX_SEED = np.iinfo(np.int32).max
21
- # MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # # @spaces.GPU #[uncomment to use ZeroGPU]
25
- # def infer(
26
- # prompt,
27
- # negative_prompt,
28
- # seed,
29
- # randomize_seed,
30
- # width,
31
- # height,
32
- # guidance_scale,
33
- # num_inference_steps,
34
- # progress=gr.Progress(track_tqdm=True),
35
- # ):
36
- # if randomize_seed:
37
- # seed = random.randint(0, MAX_SEED)
38
-
39
- # generator = torch.Generator().manual_seed(seed)
40
-
41
- # image = pipe(
42
- # prompt=prompt,
43
- # negative_prompt=negative_prompt,
44
- # guidance_scale=guidance_scale,
45
- # num_inference_steps=num_inference_steps,
46
- # width=width,
47
- # height=height,
48
- # generator=generator,
49
- # ).images[0]
50
-
51
- # return image, seed
52
-
53
-
54
- # examples = [
55
- # "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- # "An astronaut riding a green horse",
57
- # "A delicious ceviche cheesecake slice",
58
- # ]
59
-
60
- # css = """
61
- # #col-container {
62
- # margin: 0 auto;
63
- # max-width: 640px;
64
- # }
65
- # """
66
-
67
- # with gr.Blocks(css=css) as demo:
68
- # with gr.Column(elem_id="col-container"):
69
- # gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- # with gr.Row():
72
- # prompt = gr.Text(
73
- # label="Prompt",
74
- # show_label=False,
75
- # max_lines=1,
76
- # placeholder="Enter your prompt",
77
- # container=False,
78
- # )
79
-
80
- # run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- # result = gr.Image(label="Result", show_label=False)
83
-
84
- # with gr.Accordion("Advanced Settings", open=False):
85
- # negative_prompt = gr.Text(
86
- # label="Negative prompt",
87
- # max_lines=1,
88
- # placeholder="Enter a negative prompt",
89
- # visible=False,
90
- # )
91
-
92
- # seed = gr.Slider(
93
- # label="Seed",
94
- # minimum=0,
95
- # maximum=MAX_SEED,
96
- # step=1,
97
- # value=0,
98
- # )
99
-
100
- # randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- # with gr.Row():
103
- # width = gr.Slider(
104
- # label="Width",
105
- # minimum=256,
106
- # maximum=MAX_IMAGE_SIZE,
107
- # step=32,
108
- # value=1024, # Replace with defaults that work for your model
109
- # )
110
-
111
- # height = gr.Slider(
112
- # label="Height",
113
- # minimum=256,
114
- # maximum=MAX_IMAGE_SIZE,
115
- # step=32,
116
- # value=1024, # Replace with defaults that work for your model
117
- # )
118
-
119
- # with gr.Row():
120
- # guidance_scale = gr.Slider(
121
- # label="Guidance scale",
122
- # minimum=0.0,
123
- # maximum=10.0,
124
- # step=0.1,
125
- # value=0.0, # Replace with defaults that work for your model
126
- # )
127
-
128
- # num_inference_steps = gr.Slider(
129
- # label="Number of inference steps",
130
- # minimum=1,
131
- # maximum=50,
132
- # step=1,
133
- # value=2, # Replace with defaults that work for your model
134
- # )
135
-
136
- # gr.Examples(examples=examples, inputs=[prompt])
137
- # gr.on(
138
- # triggers=[run_button.click, prompt.submit],
139
- # fn=infer,
140
- # inputs=[
141
- # prompt,
142
- # negative_prompt,
143
- # seed,
144
- # randomize_seed,
145
- # width,
146
- # height,
147
- # guidance_scale,
148
- # num_inference_steps,
149
- # ],
150
- # outputs=[result, seed],
151
- # )
152
-
153
- # if __name__ == "__main__":
154
- # demo.launch(share=True)
155
-
156
-
157
- import torch
158
- print(f"Is CUDA available: {torch.cuda.is_available()}")
159
- # True
160
- print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
161
- # Tesla T4
162
-
163
  import gradio as gr
164
  import shutil
165
  import os
@@ -181,7 +20,15 @@ except ImportError:
181
 
182
  from PromptTrack import PromptTracker
183
  tracker = PromptTracker()
 
 
 
184
  def process_video(video_path, prompt):
 
 
 
 
 
185
  detection_threshold=0.3
186
  track_thresh=0.4
187
  match_thresh=1
 
1
+ import spaces
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import gradio as gr
3
  import shutil
4
  import os
 
20
 
21
  from PromptTrack import PromptTracker
22
  tracker = PromptTracker()
23
+
24
+
25
+ @spaces.GPU(duration=300)
26
  def process_video(video_path, prompt):
27
+ import torch
28
+ print(f"Is CUDA available: {torch.cuda.is_available()}")
29
+ # True
30
+ print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
31
+ # Tesla T4
32
  detection_threshold=0.3
33
  track_thresh=0.4
34
  match_thresh=1