multimodalart's picture
Upload 83 files
38e20ed verified
# The implementation is adopted from TFace,made pubicly available under the Apache-2.0 license at
# https://github.com/Tencent/TFace/blob/master/recognition/torchkit/backbone/model_resnet.py
import torch.nn as nn
from torch.nn import BatchNorm1d, BatchNorm2d, Conv2d, Dropout, Linear, MaxPool2d, Module, ReLU, Sequential
from .common import initialize_weights
def conv3x3(in_planes, out_planes, stride=1):
""" 3x3 convolution with padding
"""
return Conv2d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=1,
bias=False)
def conv1x1(in_planes, out_planes, stride=1):
""" 1x1 convolution
"""
return Conv2d(
in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class Bottleneck(Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = conv1x1(inplanes, planes)
self.bn1 = BatchNorm2d(planes)
self.conv2 = conv3x3(planes, planes, stride)
self.bn2 = BatchNorm2d(planes)
self.conv3 = conv1x1(planes, planes * self.expansion)
self.bn3 = BatchNorm2d(planes * self.expansion)
self.relu = ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(Module):
""" ResNet backbone
"""
def __init__(self, input_size, block, layers, zero_init_residual=True):
""" Args:
input_size: input_size of backbone
block: block function
layers: layers in each block
"""
super(ResNet, self).__init__()
assert input_size[0] in [112, 224], \
'input_size should be [112, 112] or [224, 224]'
self.inplanes = 64
self.conv1 = Conv2d(
3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = BatchNorm2d(64)
self.relu = ReLU(inplace=True)
self.maxpool = MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.bn_o1 = BatchNorm2d(2048)
self.dropout = Dropout()
if input_size[0] == 112:
self.fc = Linear(2048 * 4 * 4, 512)
else:
self.fc = Linear(2048 * 7 * 7, 512)
self.bn_o2 = BatchNorm1d(512)
initialize_weights(self.modules)
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.bn_o1(x)
x = self.dropout(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
x = self.bn_o2(x)
return x
def ResNet_50(input_size, **kwargs):
""" Constructs a ResNet-50 model.
"""
model = ResNet(input_size, Bottleneck, [3, 4, 6, 3], **kwargs)
return model
def ResNet_101(input_size, **kwargs):
""" Constructs a ResNet-101 model.
"""
model = ResNet(input_size, Bottleneck, [3, 4, 23, 3], **kwargs)
return model
def ResNet_152(input_size, **kwargs):
""" Constructs a ResNet-152 model.
"""
model = ResNet(input_size, Bottleneck, [3, 8, 36, 3], **kwargs)
return model