Spaces:
Running
on
L40S
Running
on
L40S
# The implementation is adopted from TFace,made pubicly available under the Apache-2.0 license at | |
# https://github.com/Tencent/TFace/blob/master/recognition/torchkit/backbone/model_resnet.py | |
import torch.nn as nn | |
from torch.nn import BatchNorm1d, BatchNorm2d, Conv2d, Dropout, Linear, MaxPool2d, Module, ReLU, Sequential | |
from .common import initialize_weights | |
def conv3x3(in_planes, out_planes, stride=1): | |
""" 3x3 convolution with padding | |
""" | |
return Conv2d( | |
in_planes, | |
out_planes, | |
kernel_size=3, | |
stride=stride, | |
padding=1, | |
bias=False) | |
def conv1x1(in_planes, out_planes, stride=1): | |
""" 1x1 convolution | |
""" | |
return Conv2d( | |
in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | |
class Bottleneck(Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(Bottleneck, self).__init__() | |
self.conv1 = conv1x1(inplanes, planes) | |
self.bn1 = BatchNorm2d(planes) | |
self.conv2 = conv3x3(planes, planes, stride) | |
self.bn2 = BatchNorm2d(planes) | |
self.conv3 = conv1x1(planes, planes * self.expansion) | |
self.bn3 = BatchNorm2d(planes * self.expansion) | |
self.relu = ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.relu(out) | |
return out | |
class ResNet(Module): | |
""" ResNet backbone | |
""" | |
def __init__(self, input_size, block, layers, zero_init_residual=True): | |
""" Args: | |
input_size: input_size of backbone | |
block: block function | |
layers: layers in each block | |
""" | |
super(ResNet, self).__init__() | |
assert input_size[0] in [112, 224], \ | |
'input_size should be [112, 112] or [224, 224]' | |
self.inplanes = 64 | |
self.conv1 = Conv2d( | |
3, 64, kernel_size=7, stride=2, padding=3, bias=False) | |
self.bn1 = BatchNorm2d(64) | |
self.relu = ReLU(inplace=True) | |
self.maxpool = MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) | |
self.bn_o1 = BatchNorm2d(2048) | |
self.dropout = Dropout() | |
if input_size[0] == 112: | |
self.fc = Linear(2048 * 4 * 4, 512) | |
else: | |
self.fc = Linear(2048 * 7 * 7, 512) | |
self.bn_o2 = BatchNorm1d(512) | |
initialize_weights(self.modules) | |
if zero_init_residual: | |
for m in self.modules(): | |
if isinstance(m, Bottleneck): | |
nn.init.constant_(m.bn3.weight, 0) | |
def _make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = Sequential( | |
conv1x1(self.inplanes, planes * block.expansion, stride), | |
BatchNorm2d(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for _ in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return Sequential(*layers) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = self.bn_o1(x) | |
x = self.dropout(x) | |
x = x.view(x.size(0), -1) | |
x = self.fc(x) | |
x = self.bn_o2(x) | |
return x | |
def ResNet_50(input_size, **kwargs): | |
""" Constructs a ResNet-50 model. | |
""" | |
model = ResNet(input_size, Bottleneck, [3, 4, 6, 3], **kwargs) | |
return model | |
def ResNet_101(input_size, **kwargs): | |
""" Constructs a ResNet-101 model. | |
""" | |
model = ResNet(input_size, Bottleneck, [3, 4, 23, 3], **kwargs) | |
return model | |
def ResNet_152(input_size, **kwargs): | |
""" Constructs a ResNet-152 model. | |
""" | |
model = ResNet(input_size, Bottleneck, [3, 8, 36, 3], **kwargs) | |
return model | |